Skip to main content

3D Printed Meniscal Scaffolds

  • Living reference work entry
  • First Online:
Orthopaedic Sports Medicine

Abstract

The meniscus is a fibrocartilaginous tissue found between the femoral condyle and the tibial plateau in the knee. It contributes to the transmission of load, shock absorption, stability, lubrication of the joint, and the overall protection of the articular cartilage, as well as to the proprioception of the knee during movement. Therefore, the meniscus is essential for the healthy function of the knee. Unfortunately, the meniscus is often damaged. Moreover, meniscus injuries may never properly heal due to their segmental vascularization and may therefore require surgical intervention. Modern tissue engineering aims to create meniscal scaffolds, which can replace the meniscus and its functions totally or partially in the short term, before being gradually replaced by newly formed tissue. Many approaches, materials, and techniques have been studied to create meniscal implants. Recently, thanks to the progress of 3D (bio)printing technologies, it has been possible to develop anatomically correct meniscal scaffolds that replicate the complex architecture of the native meniscus. Currently developed meniscal scaffolds are also able to reproduce the biomechanics of native menisci while providing a favorable environment to promote cell differentiation into relevant phenotypes for meniscal extracellular matrix (ECM) deposition. Although further development in 3D structure is still required, recent results involving 3D (bio)printing of meniscal scaffolds have raised the hopes of producing all-encompassing meniscal personalized implants. The recent studies and trends in 3D-printed meniscal scaffolds are overviewed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cengiz IF, Silva-Correia J, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL. Basics of the meniscus. Stud Mechanobiol Tissue Eng Biomater. 2016;21:237–47. https://doi.org/10.1007/978-3-319-44785-8_12.

    Article  Google Scholar 

  2. Pereira H, Cengiz IF, Silva-Correia J, Cucciarini M, Gelber PE, Espregueira-Mendes J, et al. Histology-ultrastructure-biology. Surg Meniscus. 2016:23–33. https://doi.org/10.1007/978-3-662-49188-1_3.

  3. Pereira H, Cengiz IF, Silva-Correia J, Oliveira JM, Reis RL, Espregueira-Mendes J. Human meniscus: from biology to tissue engineering strategies. In: Sports injuries. Berlin/Heidelberg: Springer; 2015. p. 1089–102. https://doi.org/10.1007/978-3-642-36569-0_73.

    Chapter  Google Scholar 

  4. Fox AJS, Wanivenhaus F, Burge AJ, Warren RF, Rodeo SA. The human meniscus: a review of anatomy, function, injury, and advances in treatment. Clin Anat. 2015;28(2):269–87. https://doi.org/10.1002/CA.22456.

    Article  PubMed  Google Scholar 

  5. LaPrade RF, Arendt EA, Getgood A, Faucett S. The menisci: a comprehensive review of their anatomy, biomechanical function and surgical treatment. 2017. p. 1–198. https://doi.org/10.1007/978-3-662-53792-3.

  6. Markes AR, Hodax JD, Ma CB. Meniscus form and function. Clin Sports Med. 2020;39(1):1–12. https://doi.org/10.1016/J.CSM.2019.08.007.

    Article  PubMed  Google Scholar 

  7. Klarmann GJ, Gaston J, Ho VB. A review of strategies for development of tissue engineered meniscal implants. Biomater Biosyst. 2021;4:100026. https://doi.org/10.1016/J.BBIOSY.2021.100026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doral MN, Bilge O, Huri G, Turhan E, Verdonk R. Modern treatment of meniscal tears. EFORT Open Rev. 2018;3(5):260–8. https://doi.org/10.1302/2058-5241.3.170067.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Garrett WE, Swiontkowski MF, Weinstein JN, Callaghan J, Rosier RN, Berry DJ, et al. American Board of Orthopaedic Surgery practice of the orthopaedic surgeon: part-II, certification examination case mix. J Bone Jt Surg Ser A. 2006;88(3):660–7. https://doi.org/10.2106/00004623-200603000-00027.

    Article  Google Scholar 

  10. Khetia EA, McKeon BP. Meniscal allografts: biomechanics and techniques. Sports Med Arthrosc Rev. 2007;15:114–20. https://doi.org/10.1097/JSA.0b013e3180dca217.

    Article  PubMed  Google Scholar 

  11. Pereira H, Cengiz IF, Silva-Correia J, Ripoll PL, Varatojo R, Oliveira JM, et al. Meniscal repair: indications, techniques, and outcome. Arthrosc Basic Adv. 2016:125–42. https://doi.org/10.1007/978-3-662-49376-2_11.

  12. Cengiz IF, Oliveira JM, Ochi M, Nakamae A, Adachi N, Reis RL. “Biologic” Treatment for Meniscal Repair. Inj Heal Probl Footb. 2017:679–86. https://doi.org/10.1007/978-3-662-53924-8_58.

  13. Cengiz IF, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL. Treatments of meniscus lesions of the knee: current concepts and future perspectives. Regen Eng Transl Med. 2017;3:32–50. https://doi.org/10.1007/s40883-017-0025-z.

    Article  Google Scholar 

  14. Pereira H, Cengiz IF, Silva-Correia J, Oliveira JM, Reis RL, Espregueira-Mendes J. The role of arthroscopy in the treatment of degenerative meniscus tear. Arthrosc Basic Adv. 2016:107–17. https://doi.org/10.1007/978-3-662-49376-2_9.

  15. Cengiz IF, Pereira H, Silva-Correia J, Ripoll PL, Espregueira-Mendes J, Kaz R, et al. Meniscal lesions: from basic science to clinical Management in Footballers. Inj Heal Probl Footb 2017:145–63. https://doi.org/10.1007/978-3-662-53924-8_14.

  16. Baratz ME, Fu FH, Mengato R. Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee: a preliminary report. Am J Sports Med. 2016;14(4):270–5. https://doi.org/10.1177/036354658601400405.

    Article  Google Scholar 

  17. Englund M, Lohmander LS. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum. 2004;50(9):2811–9. https://doi.org/10.1002/ART.20489.

    Article  CAS  PubMed  Google Scholar 

  18. Paxton ES, Stock MV, Brophy RH. Meniscal repair versus partial meniscectomy: a systematic review comparing reoperation rates and clinical outcomes. Arthrosc J Arthrosc Relat Surg. 2011;27(9):1275–88. https://doi.org/10.1016/J.ARTHRO.2011.03.088.

    Article  Google Scholar 

  19. Rosso F, Bisicchia S, Bonasia DE, Amendola A. Meniscal allograft transplantation: a systematic review. Am J Sports Med. 2015;43:998–1007. https://doi.org/10.1177/0363546514536021.

    Article  PubMed  Google Scholar 

  20. De Bruycker M, Verdonk PCM, Verdonk RC. Meniscal allograft transplantation: a meta-analysis. SICOT-J. 2017:3. https://doi.org/10.1051/sicotj/2017016.

  21. Pereira H, Cengiz IF, Gomes S, Espregueira-Mendes J, Ripoll PL, Monllau JC, et al. Meniscal allograft transplants and new scaffolding techniques. EFORT Open Rev. 2019;4(6):279. https://doi.org/10.1302/2058-5241.4.180103.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Verdonk R, Kohn D. Harvest and conservation of meniscal allografts. Scand J Med Sci Sports. 1999;9(3):158–9. https://doi.org/10.1111/J.1600-0838.1999.TB00446.X.

    Article  CAS  PubMed  Google Scholar 

  23. Cengiz IF, Pitikakis M, Cesario L, Parascandolo P, Vosilla L, Viano G, et al. Building the basis for patient-specific meniscal scaffolds: from human knee MRI to fabrication of 3D printed scaffolds. Bioprinting. 2016;1–2:1–10. https://doi.org/10.1016/j.bprint.2016.05.001.

    Article  Google Scholar 

  24. Cengiz IF, Pereira H, Pitikakis M, Espregueira-Mendes J, Oliveira JM, Reis RL. Building the basis for patient-specific meniscal scaffolds. Bio-orthopaedics: a new approach. 2017. p. 411–8. https://doi.org/10.1007/978-3-662-54181-4_32.

  25. Decante G, Costa J, Silva-Correia J, Collins M, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication. 2021;13:032001. https://doi.org/10.1088/1758-5090/abec2c.

    Article  CAS  Google Scholar 

  26. Cengiz IF, Pereira H, de Girolamo L, Cucchiarini M, Espregueira-Mendes J, Reis RL, et al. Orthopaedic regenerative tissue engineering en route to the holy grail: disequilibrium between the demand and the supply in the operating room. J Exp Orthop. 2018;5(1):1–14. https://doi.org/10.1186/S40634-018-0133-9.

    Article  Google Scholar 

  27. Cengiz IF, Pereira H, Espregueira-Mendes J, Kwon IK, Reis RL, Oliveira JM. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation. J Mater Sci Mater Med. 2019;30(6):1–17. https://doi.org/10.1007/S10856-019-6265-3/FIGURES/9.

    Article  Google Scholar 

  28. Cengiz IF, Maia FR, Da Silva MA, Silva-Correia J, Pereira H, Canadas RF, et al. Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering. Biofabrication. 2020;12(2):025028. https://doi.org/10.1088/1758-5090/AB779F.

    Article  CAS  PubMed  Google Scholar 

  29. Bandyopadhyay A, Mandal BB. A three-dimensional printed silk-based biomimetic tri-layered meniscus for potential patient-specific implantation. Biofabrication. 2019;12(1):015003.

    Article  PubMed  Google Scholar 

  30. Guo W, Chen M, Wang Z, Tian Y, Zheng J, Gao S, et al. 3D-printed cell-free PCL–MECM scaffold with biomimetic micro-structure and micro-environment to enhance in situ meniscus regeneration. Bioact Mater. 2021;6(10):3620–33. https://doi.org/10.1016/j.bioactmat.2021.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abbadessa A, Crecente-Campo J, Alonso MJ. Engineering anisotropic meniscus: zonal functionality and spatiotemporal drug delivery. Tissue Eng B Rev. 2021;27:133–54. https://doi.org/10.1089/ten.teb.2020.0096.

    Article  CAS  Google Scholar 

  32. Boularaoui S, Al Hussein G, Khan KA, Christoforou N, Stefanini C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting. 2020;20:e00093. https://doi.org/10.1016/J.BPRINT.2020.E00093.

    Article  Google Scholar 

  33. Luo W, Song Z, Wang Z, Wang Z, Li Z, Wang C, et al. Printability optimization of gelatin-alginate bioinks by cellulose nanofiber modification for potential meniscus bioprinting. J Nanomater. 2020;2020:1. https://doi.org/10.1155/2020/3863428.

    Article  CAS  Google Scholar 

  34. Warren PB, Huebner P, Spang JT, Shirwaiker RA, Fisher MB. Engineering 3D-bioplotted scaffolds to induce aligned extracellular matrix deposition for musculoskeletal soft tissue replacement. Connect Tissue Res. 2017;58(3–4):342–54. https://doi.org/10.1080/03008207.2016.1276177.

    Article  CAS  PubMed  Google Scholar 

  35. Dorosz S, Schmidt T. Lubrication of cartilage – meniscus biointerface by proteoglycan 4 and Hyaluronan; effect of sliding velocity. Osteoarthr Cartil. 2015;23:A26–7. https://doi.org/10.1016/J.JOCA.2015.02.066.

    Article  Google Scholar 

  36. Filardo G, Petretta M, Cavallo C, Roseti L, Durante S, Albisinni U, et al. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Jt Res. 2019;8(2):101–6. https://doi.org/10.1302/2046-3758.82.BJR-2018-0134.R1.

    Article  CAS  Google Scholar 

  37. Chen S, Fu P, Wu H, Pei M. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res. 2017;370:53–70. https://doi.org/10.1007/s00441-017-2613-0.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Romanazzo S, Vedicherla S, Moran C, Kelly DJ. Meniscus ECM-functionalised hydrogels containing infrapatellar fat pad-derived stem cells for bioprinting of regionally defined meniscal tissue. J Tissue Eng Regen Med. 2018;12(3):e1826–35. https://doi.org/10.1002/term.2602.

    Article  CAS  PubMed  Google Scholar 

  39. Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJA, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013;25(36):5011–28. https://doi.org/10.1002/adma.201302042.

    Article  CAS  PubMed  Google Scholar 

  40. Ghorbani F, Li D, Ni S, Zhou Y, Yu B. 3D printing of acellular scaffolds for bone defect regeneration: a review. Mater Today Commun. 2020;22:100979. https://doi.org/10.1016/J.MTCOMM.2020.100979.

    Article  CAS  Google Scholar 

  41. Araujo Borges R, Choudhury D, Zou M. 3D printed PCU/UHMWPE polymeric blend for artificial knee meniscus. Tribol Int. 2018;122:1–7. https://doi.org/10.1016/j.triboint.2018.01.065.

    Article  CAS  Google Scholar 

  42. Zhang Z, Liu R, Zepeda H, Zeng L, Qiu J, Wang S. 3D printing super strong hydrogel for artificial meniscus. ACS Appl Polym Mater. 2019;1(8):2023–32. https://doi.org/10.1021/acsapm.9b00304.

    Article  CAS  Google Scholar 

  43. Szojka A, Lalh K, Andrews SHJ, Jomha NM, Osswald M, Adesida AB. Biomimetic 3D printed scaffolds for meniscus tissue engineering. Bioprinting. 2017;8:1–7. https://doi.org/10.1016/J.BPRINT.2017.08.001.

    Article  Google Scholar 

  44. Ghodbane SA, Patel JM, Brzezinski A, Lu TM, Gatt CJ, Dunn MG. Biomechanical characterization of a novel collagen-hyaluronan infused 3D-printed polymeric device for partial meniscus replacement. J Biomed Mater Res B Appl Biomater. 2019;107(8):2457–65. https://doi.org/10.1002/JBM.B.34336.

    Article  CAS  PubMed  Google Scholar 

  45. Bahcecioglu G, Hasirci N, Bilgen B, Hasirci V. Hydrogels of agarose, and methacrylated gelatin and hyaluronic acid are more supportive for in vitro meniscus regeneration than three dimensional printed polycaprolactone scaffolds. Int J Biol Macromol. 2019;122:1152–62. https://doi.org/10.1016/j.ijbiomac.2018.09.065.

    Article  CAS  PubMed  Google Scholar 

  46. Bahcecioglu G, Bilgen B, Hasirci N, Hasirci V. Anatomical meniscus construct with zone specific biochemical composition and structural organization. Biomaterials. 2019;218:119361. https://doi.org/10.1016/j.biomaterials.2019.119361.

    Article  CAS  PubMed  Google Scholar 

  47. Narayanan LK, Huebner P, Fisher MB, Spang JT, Starly B, Shirwaiker RA. 3D-bioprinting of Polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng. 2016;2(10):1732–42. https://doi.org/10.1021/acsbiomaterials.6b00196.

    Article  CAS  PubMed  Google Scholar 

  48. Bahcecioglu G, Hasirci N, Bilgen B, Hasirci V. A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus. Biofabrication. 2019;11(2):025002.

    Article  CAS  PubMed  Google Scholar 

  49. Nakagawa Y, Fortier LA, Mao JJ, Lee CH, Goodale MB, Koff MF, et al. Long-term evaluation of meniscal tissue formation in 3-dimensional–printed scaffolds with sequential release of connective tissue growth factor and TGF-Β3 in an ovine model. Am J Sports Med. 2019;47(11):2596–607. https://doi.org/10.1177/0363546519865513.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li H, Liao Z, Yang Z, Gao C, Fu L, Li P, et al. 3D printed poly(ε-Caprolactone)/meniscus extracellular matrix composite scaffold functionalized with Kartogenin-releasing PLGA microspheres for meniscus tissue engineering. Front Bioeng Biotechnol. 2021;9:662381.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen M, Feng Z, Guo W, Yang D, Gao S, Li Y, et al. PCL-MECM-based hydrogel hybrid scaffolds and meniscal fibrochondrocytes promote whole meniscus regeneration in a rabbit meniscectomy model. ACS Appl Mater Interfaces. 2019;11(44):41626–39. https://doi.org/10.1021/acsami.9b13611.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Z-Z, Jiang D, Ding J-X, Wang S-J, Zhang L, Zhang J-Y, et al. Role of scaffold mean pore size in meniscus regeneration. Acta Biomater. 2016;43:314–26. https://doi.org/10.1016/j.actbio.2016.07.050.

    Article  CAS  PubMed  Google Scholar 

  53. Bas O, De-Juan-Pardo EM, Meinert C, D’Angella D, Baldwin JG, Bray LJ, et al. Biofabricated soft network composites for cartilage tissue engineering. Biofabrication. 2017;9(2). https://doi.org/10.1088/1758-5090/aa6b15.

  54. Sandmann GH, Adamczyk C, Garcia EG, Doebele S, Buettner A, Milz S, et al. Biomechanical comparison of menisci from different species and artificial constructs. BMC Musculoskelet Disord. 2013;14(1):1–8. https://doi.org/10.1186/1471-2474-14-324.

    Article  Google Scholar 

  55. Gupta S, Sharma A, Vasantha Kumar J, Sharma V, Gupta PK, Verma RS. Meniscal tissue engineering via 3D printed PLA monolith with carbohydrate based self-healing interpenetrating network hydrogel. Int J Biol Macromol. 2020;162:1358–71. https://doi.org/10.1016/j.ijbiomac.2020.07.238.

    Article  CAS  PubMed  Google Scholar 

  56. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17(Suppl 4):467. https://doi.org/10.1007/S00586-008-0745-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater. 2018;3:144–56. https://doi.org/10.1016/j.bioactmat.2017.11.008.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8:032002. https://doi.org/10.1088/1758-5090/8/3/032002.

    Article  CAS  PubMed  Google Scholar 

  59. Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced bioinks for 3D printing: a materials science perspective. Ann Biomed Eng. 2016;44(6):2090–102. https://doi.org/10.1007/s10439-016-1638-y.

    Article  PubMed  Google Scholar 

  60. Ji S, Guvendiren M. Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol. 2017;5:1–8. https://doi.org/10.3389/fbioe.2017.00023.

    Article  Google Scholar 

  61. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018;22:1–15. https://doi.org/10.1186/s40824-018-0122-1.

    Article  CAS  Google Scholar 

  62. Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016;5(3):326–33. https://doi.org/10.1002/adhm.201500677.

    Article  CAS  PubMed  Google Scholar 

  63. Barnes HA. Thixotropy – a review. J Nonnewton Fluid Mech. 1997;70:1–33. https://doi.org/10.1016/S0377-0257(97)00004-9.

    Article  CAS  Google Scholar 

  64. Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 2016;34:722–32. https://doi.org/10.1016/j.tibtech.2016.05.013.

    Article  CAS  PubMed  Google Scholar 

  65. Ng WL, Lee JM, Yeong WY, Win NM. Microvalve-based bioprinting-process, bio-inks and applications. Biomater Sci. 2017;5:632–47. https://doi.org/10.1039/c6bm00861e.

    Article  CAS  PubMed  Google Scholar 

  66. He Y, Gu Z, Xie M, Fu J, Lin H. Why choose 3D bioprinting? Part II: methods and bioprinters. BioDesign Manuf. 2020;3:1–4. https://doi.org/10.1007/s42242-020-00064-w.

    Article  Google Scholar 

  67. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012.

    Article  CAS  PubMed  Google Scholar 

  68. Highley CB, Camacho P, Busari H, Seims KB, Tolbert JW, Chow LW, et al. 3D bioprinting in medicine. In: Guvendiren M, editor. 3D bioprinting technologies. Cham: Springer International Publishing; 2019. p. 1–66. https://doi.org/10.1007/978-3-030-23906-0.

    Chapter  Google Scholar 

  69. Donderwinkel I, Van Hest JCM, Cameron NR. Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem. 2017;8(31):4451–71. https://doi.org/10.1039/c7py00826k.

    Article  CAS  Google Scholar 

  70. Fedorovich NE, Oudshoorn MH, van Geemen D, Hennink WE, Alblas J, Dhert WJA. The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials. 2009;30(3):344–53. https://doi.org/10.1016/j.biomaterials.2008.09.037.

    Article  CAS  PubMed  Google Scholar 

  71. Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH. 3-Dimensional bioprinting for tissue engineering applications. Biomater Res. 2016;20:12. https://doi.org/10.1186/s40824-016-0058-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Woodfield T, Lim K, Morouço P, Levato R, Malda J, Melchels F. Biofabrication in tissue engineering. Compr Biomater II. 2017;5:236–66. https://doi.org/10.1016/B978-0-12-803581-8.10221-8.

    Article  CAS  Google Scholar 

  73. Cengiz IF, Pereira H, Pêgo JM, Sousa N, Espregueira-Mendes J, Oliveira JM, et al. Segmental and regional quantification of 3D cellular density of human meniscus from osteoarthritic knee. J Tissue Eng Regen Med. 2017;11(6):1844–52. https://doi.org/10.1002/TERM.2082.

    Article  CAS  PubMed  Google Scholar 

  74. Pereira H, Caridade SG, Frias AM, Silva-Correia J, Pereira DR, Cengiz IF, et al. Biomechanical and cellular segmental characterization of human meniscus: building the basis for tissue engineering therapies. Osteoarthr Cartil. 2014;22(9):1271–81. https://doi.org/10.1016/J.JOCA.2014.07.001.

    Article  CAS  Google Scholar 

  75. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C. 2018;83:195–201. https://doi.org/10.1016/J.MSEC.2017.09.002.

    Article  CAS  Google Scholar 

  76. Ghodbane SA, Brzezinski A, Patel JM, Plaff WH, Marzano KN, Gatt CJ, et al. Partial meniscus replacement with a collagen-Hyaluronan infused three-dimensional printed polymeric scaffold. Tissue Eng A. 2019;25(5–6):379–89. https://doi.org/10.1089/ten.tea.2018.0160.

    Article  CAS  Google Scholar 

  77. Zhang ZZ, Chen YR, Wang SJ, Zhao F, Wang XG, Yang F, et al. Orchestrated biomechanical, structural, and biochemical stimuli for engineering anisotropic meniscus. Sci Transl Med. 2019;11(487). https://doi.org/10.1126/SCITRANSLMED.AAO0750.

  78. Zhang ZZ, Wang SJ, Zhang JY, Jiang WB, Huang AB, Qi YS, et al. 3D-printed poly(∈-Caprolactone) scaffold augmented with mesenchymal stem cells for total meniscal substitution: a 12- and 24-week animal study in a rabbit model. Am J Sports Med. 2017;45(7):1497–511. https://doi.org/10.1177/0363546517691513.

    Article  PubMed  Google Scholar 

  79. Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS. “Printability” of candidate biomaterials for extrusion based 3D printing: state-of-the-art. Adv Healthc Mater. 2017;6(16):1–16. https://doi.org/10.1002/adhm.201700264.

    Article  CAS  Google Scholar 

  80. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nature Biotechnol. 2014;32:773–85. https://doi.org/10.1038/nbt.2958.

    Article  CAS  Google Scholar 

  81. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33(26):6020–41. https://doi.org/10.1016/j.biomaterials.2012.04.050.

    Article  CAS  PubMed  Google Scholar 

  82. Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60(3):691–9. https://doi.org/10.1109/TBME.2013.2243912.

    Article  PubMed  Google Scholar 

  83. Saunders RE, Derby B. Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev. 2014;59(8):430–48. https://doi.org/10.1179/1743280414Y.0000000040.

    Article  CAS  Google Scholar 

  84. Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis. 2017;4:185–95. https://doi.org/10.1016/j.gendis.2017.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sinha RP, Häder DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci. 2002;1(4):225–36. https://doi.org/10.1039/b201230h.

    Article  CAS  PubMed  Google Scholar 

  86. Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials. 2018:11. https://doi.org/10.3390/ma11112199.

  87. Xu T, Baicu C, Aho M, Zile M, Boland T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication. 2009;1(3):035001. https://doi.org/10.1088/1758-5082/1/3/035001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34:422–34. https://doi.org/10.1016/j.biotechadv.2015.12.011.

    Article  CAS  PubMed  Google Scholar 

  89. Irvine S, Venkatraman S. Bioprinting and differentiation of stem cells. Molecules. 2016;21(9):1188. https://doi.org/10.3390/molecules21091188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided through the projects B-FABULUS (PTDC/BBB-ECT/2690/2014) and Fun4TE (PTDC/EMD-EMD/31367/2017), financed by the Portuguese Foundation for Science and Technology (FCT) and co-financed by European Regional Development Fund (FEDER) and Operational Programme for Competitiveness and Internationalisation (POCI). This work has been co-funded through the 3BioMeD project (FCT/4773/4/5/2017/S). The authors also thank the financial support under the Norte2020 project (NORTE-08-5369-FSE000044) and the FCT program (PD/BD/143081/2018). The authors also thank the funding through the project 2IQBIONEURO (ref. 0624_2IQBIONEURO_6_E). IFC thanks the TERM RES-Hub, Tissue Engineering and Regenerative Medicine Infrastructure project, funded by FCT. G. Decante acknowledges for his research fellowship (BI_PTDC/BBB-ECT/2690/2014_2020_01) attributed under the B-FABULUS project. The FCT distinction attributed to IFC under the Estímulo ao Emprego Científico program (2021.01969.CEECIND) is also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Fatih Cengiz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Decante, G., Cengiz, I.F., Silva-Correia, J., Reis, R.L., Oliveira, J.M. (2023). 3D Printed Meniscal Scaffolds. In: Espregueira-Mendes, J., Karlsson, J., Musahl, V., Ayeni, O.R. (eds) Orthopaedic Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65430-6_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65430-6_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65430-6

  • Online ISBN: 978-3-030-65430-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics