Skip to main content

Excimer Lasers for Lithography and Annealing

  • Reference work entry
  • First Online:
Handbook of Laser Micro- and Nano-Engineering

Abstract

Development history of excimer lasers for lithography whose wavelengths are 248 nm and 193 nm is described. The history of key components development for lithography is described in detail. The detailed technologies include spectral line narrowing, discharge in high pressure toxic gas, pulsed power circuit with solid state switching device, high repetition rate excitation technology by reducing shockwave in the chamber, shorter wavelength technology in deep UV region (λ < 250 nm), and injection lock technology by using two excimer lasers. As the result during last 40 years excimer laser technology dramatically expanded its market especially in the application for lithography.

Another application is excimer laser annealing for LCD panel. And the requirement to micromachining in terms of dimensions is becoming smaller and smaller. Recently feature size of processing became less than 100 μm. The excimer laser annealing is key technology for liquid crystal display manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • American Physical Society/Lasers/History/Timeline: http://www.laserfest.org/lasers/history/timeline.cfm

  • Ariga T, Watanabe H, Kumazaki T, Kitatochi N, Sasano K, Ueno Y, Nishisaka T, Nohdomi R, Hotta K, Mizoguchi H, Nakao K (2001) Challenge of the F2 laser for dioptric projection system [ML 4346-120]. In: Optical microlithography XIV, pp 1158–1165

    Google Scholar 

  • Ariga T, Watanabe H, Kumazaki T, Kitatochi N, Sasano K, Ueno Y, Konishi M, Suganuma T, Nakano M, Yamashita T, Nishisaka T, Nohdomi R, Hotta K, Mizoguchi H, Nakao K (2002a) Development of a 5-kHz ultra-line-narrowed F2 laser for dioptric projection systems. Proc SPIE 4691, Optical microlithography XV

    Google Scholar 

  • Ariga T, Watanabe H, Kumazaki T, Kitatochi N, Sasano K, Ueno Y, Konishi M, Suganuma T, Nakano M, Yamashita T, Nishisaka T, Nohdomi R, Hotta K, Mizoguchi H, Nakao K (7–9 May 2002b) 157nm technical data review, Dallas

    Google Scholar 

  • Ault ER et al (1975) High-power xenon fluoride laser. Appl Phys Lett 27:413

    Article  ADS  Google Scholar 

  • Basov NG et al (1970) Zh Eksp Fiz i Tekh Pis’ma Red 12:473

    Google Scholar 

  • Basting D, Marowsky G (eds) (2005) Excimer laser technology. Springer

    Google Scholar 

  • Basting D et al (2002) History and future prospects of excimer laser technology. In: 2nd international symposium on laser precision microfabrication, pp 14–22

    Google Scholar 

  • Basting D et al (2005) Historical review of excimer laser development. In: Basting D, Marowsky G (eds) Excimer laser technology. Springer

    Chapter  Google Scholar 

  • Christensen CP, Waynant RW, Feldman BJ (1985) High efficiency microwave discharge XeCl laser. Appl Phys Lett 46:321

    Article  ADS  Google Scholar 

  • Cymer (1991) J Vacuum Sci Technol

    Google Scholar 

  • Cymer (1992) Proc SPIE 1674, Optical/laser microlithography V

    Google Scholar 

  • Cymer. Proc SPIE 5040 (2003) & 5645 (2004) Optical/laser microlithography

    Google Scholar 

  • Duarte FJ (ed) (1995) Tunable lasers handbook. Academic, New York

    Google Scholar 

  • Enami T, Wakabayashi O, Nishisaka T, Suzuki N, Nire T, Mizoguchi H, Nakarai H, Tanaka H, Ariga T, Shio K, Okamoto T, Nodomi R, Tomaru H, Nakao K (1998) High-spectral-purity and high-durability kHz KrF excimer laser with advanced rf preionization discharge. Proc SPIE 3334, Optical microlithography XI

    Google Scholar 

  • Enami T, Wakabayashi O, Ishii K, Terashima K, Itakura Y, Watanabe T, Ohta T, Ohbu A, Kubo H, Tanaka H, Suzuki T, Sumitani A, Mizoguchi H (2000) Highly durable, low CoO, mass production version of 2kHz ArF excimer laser for DUV lithography. Proc SPIE 4000:1435–1444

    Article  ADS  Google Scholar 

  • Ewing JJ, Brau CA (1975) Laser action on the 2 sigma+ 1/2--> 2 sigma+ 1/2 bands of KrF and XeCl. Appl Phys Lett 27(6):350–352

    Article  ADS  Google Scholar 

  • “Excimer Laser” from Wikipedia (2019)

    Google Scholar 

  • Fujimoto J, Nakaike T, Suzuki T, Nagai S, Yabu T, Soumagne G, Chiba T, Wakabayashi O, Mizoguchi H (2001) Spectral characteristics of the molecular fluorine laser. In: SEMATEC 2nd international symposium on 157nm lithography digest abstracts

    Google Scholar 

  • Hakaru M, Inoue T, Fujimoto J, Suzuki T, Matsunaga T, Sakanishi S, Kaminishi M, Watanabe Y, Nakaike T, Shinbori M, Yoshino M, Kawasuji T, Nogawa H, Umeda H, Taniguchi H, Sasaki Y, Kinoshita J, Abe T, Tanaka H, Hayashi H, Miyao K, Niwano M, Kurosu A, Yashiro M, Nagano H, Igarashi T, Mimura T, Kakizaki K (2006) High power injection lock 6 kHz 60 W laser for ArF dry/wet lithography. Proc SPIE 6154, Optical Microlithography XIX

    Google Scholar 

  • Hermans J, Van Roey F, Jonckheere RM, Goethals A, Ronse KG (2003) Optical microlithography XVI, SPIE5040 [5040-54]

    Google Scholar 

  • Hori T, Yabu T, Watanabe T, Wakabayashi O, Sumitani A, Komatsu Ltd. (Japan), Kakizaki K, Ushio Inc. (Japan), Mizoguchi H, Gigaphoton Inc. (Japan) (1–4 March 2005) Feasibility study of a 6-kHz ArF excimer laser for 193-nm immersion lithography. Proc SPIE #5754 [5754-140]

    Google Scholar 

  • https://aip.scitation.org/doi/abs/10.1063/1.1641513

  • Igarashi M, Miyamoto H, Katou M, Tsushima H, Moriya M, Kurosu A, Tanaka H, Tanaka S, Ohta T, Bushida S, Saitou T, Mizoguchi H (2020) Imaging performance enhancement by improvements of spectral performance stability and controllability on the cutting-edge. Proc SPIE 11327, Optical microlithography XXXIII, 1132717

    Google Scholar 

  • Ishida K, Ohta T, Miyamoto H, Kumazaki T, Tsushima H, Kurosu A, Matsunaga T, Mizoguchi H (2016) The ArF laser for the next-generation multiple-patterning immersion lithography supporting green operations. Proc SPIE 9780, Optical microlithography XXIX, 978010

    Google Scholar 

  • IUPAC (1997) Compendium of chemical terminology, 2nd edn (The “Gold Book”). Online corrected version: (2006–) “excimer laser”. https://doi.org/10.1351/goldbook.E02243

  • Jain K (1990) Excimer laser lithography. SPIE Press, Bellingham

    Google Scholar 

  • Jain K et al (1982) Ultrafast deep-UV lithography with excimer lasers. IEEE Electron Device Lett EDL-3. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1482581

  • Kakizaki K, Saito T, Mitsuhashi K, Arai M, Tada T, Kasahara S, Igarashi T, Hotta K (2000) High-repetition rate ArF excimer laser for 193-nm lithography. Proc SPIE 4000:1397–1404

    Article  ADS  Google Scholar 

  • Kakizaki K, Fujimoto J, Yamazaki T, Suzuki T, Matsunaga T, Kawasuji Y, Watanabe Y, Kaminishi M, Inoue T, Mizoguchi H, Kumazaki T, Ariga T, Watanabe T, Yabu T, Sasano K, Hori T, Wakabayashi O, Sumitani A (2004) Development of high-power ArF/F2 laser platform for VUV microlithography. Proc SPIE 5377, Optical microlithography XVII

    Google Scholar 

  • Kitatochi N, Kumazaki T, Watanabe H, Ueno Y, Sasano K, Ariga T, Wakabayashi O, Nohdomi R, Hotta K, Mizoguchi H, Nakao K (2001) Spectral properties of ultra line narrowed F2 oscillator laser. In: SEMATEC 2nd international symposium on 157 nm lithography digest abstracts

    Google Scholar 

  • Kobayashi Y, Ishihara T, Nakarai H, Ito N, Takahashi T, Wakabayashi O, Mizoguchi H, Amada Y, Fujimoto J, Kowaka M, Nozue Y (1994a) Recent advances of a KrF excimer laser on a plant’s practical requirements. Proc SPIE 2197, Optical/laser microlithography VII

    Google Scholar 

  • Kobayashi Y, Ishihara T, Nakarai H, Itoh N, Takahashi T, Wakabayashi O, Mizoguchi H, Amada Y, Fujimoto J, Kowaka M, Nozue Y (1994b) Recent advance of a KrF excimer laser on the plant’s practical requirement. Proc SPIE 2197:908

    Article  ADS  Google Scholar 

  • Kowaka M, Kobayashi Y, Wakabayashi O, Itoh N, Fujimoto J, Ishihara T, Nakarai H, Mizoguchi H, Amada Y, Nozue Y (1993) Stability of Krypton fluoride laser in real stepper mode operation. Proc SPIE 1927:241

    Article  ADS  Google Scholar 

  • La Fontaine B (2010) Lasers and Moore’s law. SPIE Professional, p 20. http://spie.org/x42152.xml

  • Lin BJ (2009) Optical lithography. SPIE Press, Bellingham, p 136

    Google Scholar 

  • Matsunaga T, Enami T, Kakizaki K, Saito T, Tanaka S, Nakarai H, Inoue T (2001) Tatsushi Igarashi “Extremely high-NA high-throughput-scanner-compatible 4-kHz KrF excimer laser for DUV lithography. Proc SPIE 4346, Optical Microlithography XIV

    Google Scholar 

  • Microwave discharge. resulted in much smaller footprint, very high pulse repetition rate excimer laser, commercialized under U. S. Patent 4,796,271 by Potomac Photonics, Inc

    Google Scholar 

  • Miyamoto H, Furusato H, Ishida K, Tsushima H, Kurosu A, Tanaka H, Ohta T, Bushida S, Saito T, Mizoguchi H (2018) Next-generation ArF laser technologies for multiple-patterning immersion lithography supporting leading edge processes. Proc SPIE 10587, optical microlithography XXXI

    Google Scholar 

  • Mizoguchi H (2001) Progress of light source technologies from KrF laser to F2 laser. Proc SPIE 4404, Lithography for semiconductor manufacturing II

    Google Scholar 

  • Mizoguchi H, Wakabayashi O, Ito N, Kowaka M, Fujimoto J, Kobayashi Y, Ishihara T, Amada Y, Nozue Y (1992a) Narrow band KrF excimer laser for mass production of ULSI ICs. Proc SPIE 1674, Optical/laser microlithography V

    Google Scholar 

  • Mizoguchi H, Wakabayashi O, Itoh N, Kowaka M, Fujimoto J, Kobayashi Y, Ishihara T, Amada Y, Nozue Y (1992b) Narrow band KrF excimer laser for mass production of ULSI IC’s. Proc SPIE 1674:532

    Article  ADS  Google Scholar 

  • Mizoguchi H, Ito N, Nakarai H, Kobayashi Y, Itakura Y, Komori H, Wakabayashi O, Aruga T, Sakugawa T, Koganezawa T (1996a) High-power KrF excimer laser with a solid state switch for microlithography. Proc SPIE 2726, Optical microlithography IX

    Google Scholar 

  • Mizoguchi H, Ito N, Nakarai H, Kobayashi Y, Itakura Y, Komori H, Wakabayashi O, Aruga T, Sakugawa T, Koganezawa T (1996b) High-power KrF excimer laser with a solid state switch for microlithography. Proc SPIE 2726, Optical microlithography IX

    Google Scholar 

  • Mizoguchi H, Nohdomi R, Ariga T, Hotta K, Nakao K, Kasuya K (2003) Development of 5-kHz ultra-line-narrowed F2 laser for dioptric projection system. In: Proceedings of SPIE 5120, XIV international symposium on gas flow, chemical lasers, and high-power lasers

    Google Scholar 

  • Mizoguchi H, Inoue T, Fujimoto J, Yamazaki T, Suzuki T, Matsunaga T, Sakanishi S, Kaminishi M, Watanabe Y, Ohta T, Nakane M, Moriya M, Nakaike T, Shinbori M, Yoshino M, Kawasuji T, Nogawa H, Ito T, Umeda H, Tanaka S, Taniguchi H, Sasaki Y, Kinoshita J, Abe T, Tanaka H, Hayashi H, Miyao K, Niwano M, Kurosu A, Yashiro M, Nagano H, Matsui N, Mimura T, Kakizaki K, Goto M (2005a) High-power injection lock laser platform for ArF dry/wet lithography. Proc SPIE 5754, Optical microlithography XVIII

    Google Scholar 

  • Mizoguchi H, Gigaphoton Inc. (Japan), Inoue T, Shinbori M, Yoshino M, Tanaka S, Taniguchi H, Sasaki Y, Kinoshita J, Miyao K, Abe T, Nagano H, Kakizaki K, Ushio Inc. (Japan), Fujimoto J, Yamazaki T, Suzuki T, Matsunaga T, Sakanishi S, Kaminishi M, Watanabe Y, Ohta T, Nakane M, Moriya M, Nakaike T, Kawasuji T, Nogawa H, Ito T, Umeda H, Tanaka H, Hayashi H, Niwano M, Kurosu A, Yashiro M, Matsui N, Mimura T, Komatsu Ltd. (Japan) (Tuesday–Friday 1–4 March 2005b) High-power injection-lock laser platform for ArF dry/wet lithography. Proc SPIE #5754 [5754-74]

    Google Scholar 

  • Mizoguchi H, Inoue T, Fujimoto J, Suzuki T, Matsunaga T, Sakanishi S, Kaminishi M, Watanabe Y, Nakaike T, Shinbori M, Yoshino M, Kawasuji T, Nogawa H, Umeda H, Taniguchi H, Sasaki Y, Kinoshita J, Abe T, Tanaka H, Hayashi H, Miyao K, Niwano M, Kurosu A, Yashiro M, Nagano H, Igarashi T, Mimura T, Kakizaki K (2006) High power injection lock 6 kHz 60 W laser for ArF dry/wet lithography. Proc SPIE 6154, Optical microlithography XIX, 615425

    Google Scholar 

  • Nakaike T, Wakabayashi O, Suzuki T, Mizoguchi H, Nakao K, Nohdomi R, Ariga T, Kitatochi N, Suganuma T, Kumazaki T, Hotta K, Yoshioka M (2001) Spectral metrologies for ultra line narrowed F2 laser [ML4691-195]. In: Lithography optical microlithography XV

    Google Scholar 

  • Nohdomi R, Ariga T, Watanabe H, Kumazaki T, Kitatochi N, Sasano K, Ueno Y, Nishisaka T, Hotta K, Mizoguchi H, Nakao K (2001) High power high repetition rate ultra-line-narrowed F2 laser for microlithography. In: SEMATEC 2nd international symposium on 157 nm lithography digest abstracts

    Google Scholar 

  • Nohdomi R, Ariga T, Watanabe H, Kumazaki T, Hotta K, Mizoguchi H Takahashi A, Okada T (4–6 Sept 2002) 157nm international symposium, Antwerp

    Google Scholar 

  • Osipov VV (2000) Self-sustained volume discharge. Physics-Uspekhi 43(3):221–241. SPIE, Proceedings Volume 5040 (2003) & 5645 (2004), Optical/laser microlithography

    Google Scholar 

  • Owa S, Nagasaka H (2003) Optical microlithography XVI, SPIE5040 [5040-186]

    Google Scholar 

  • Partio W, Sandstrom R, Fomenkov I, Das P (1995) A low cost of ownership KrF excimer laser using a novel pulse power and chamber configuration. Proc SPIE 2440:90

    Article  ADS  Google Scholar 

  • Polasko et al (1984) Deep UV exposure of Ag2Se/GeSe2 utilizing an excimer laser. IEEE Electron Device Lett 5:24. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1484194&tag=1

    Article  ADS  Google Scholar 

  • Saito T, Matsunaga T, Mitsuhashi K, Terashima K, Ohta T, Takanobu K, Ishihara T, Tsushima H, Yoshino M, Enami T, Tomaru H, Igarashi T (2001) Optical microlithography XIV, SPIE4346 [4346-128]

    Google Scholar 

  • Saito T, Suzuki T, Yoshino M, Wakabayashi O, Matsunaga T, Fujimoto J, Kakizaki K, Yamazaki T, Inoue T, Terashima K, Enami T, Inoue H, Tomaru H, Mizoguchi H, Igarashi T (2003) Optical microlithography XVI, SPIE5040 [5040-182]

    Google Scholar 

  • Samsung Starts Industry’s First Mass Production of System-on-Chip with 10-Nanometer FinFET Technology; https://news.samsung.com/global/samsung-starts-industrys-first-mass-production-of-system-on-chip-with-10-nanometer-finfet-technology

  • Searles SK, Hart GA (1975) Stimulated emission at 281.8 nm from XeBr. Appl Phys Lett 27:243

    Article  ADS  Google Scholar 

  • SPIE/Advancing the Laser/50 Years and into the Future: http://spie.org/Documents/AboutSPIE/SPIE%20Laser%20Luminaries.pdf

  • Suganuma T, Kubo H, Wakabayashi O, Mizoguchi H, Nakao K, Nabekawa Y, Togashi T, Watanabe S (2001) 157-nm coherent light source for F2 laser lithography [CPD7-1]. In: CLEO 2001 postdeadline papers

    Google Scholar 

  • Suzuki K, Ozawa K, Tanitsu O, Go M (1995) Dosage control for scanning exposure with pulse energy fluctuation and exposed position jitters. Tech Abst Microprocess Conf

    Google Scholar 

  • Tisone GC, Hays AK, Hoffman JM (1975) 100 MW, 248.4 nm, KrF laser excited by an electron beam. Optics Commun 15(2):188–189

    Article  ADS  Google Scholar 

  • Wakabayashi O, Sakuma J, Suzuki T, Kubo H, Kitatochi N, Suganuma T, Nakaike T, Kumazaki T, Hotta K, Mizoguchi H, Nakao K, Togashi T, Nabekawa Y, Watanabe S (2001a) Spectral measurement of ultra line-narrowed F2 laser. Proc SPIE 4346, Optical microlithography XIV

    Google Scholar 

  • Wakabayashi O, Sakuma J, Suzuki T, Kubo H, Kitatochi N, Suganuma T, Nakaike T, Kumazaki T, Hotta K, Mizoguchi H, Nakao K (2001b) Spectral measurement of ultra line-narrowed F2 laser [ML 4346-108]. In: Lithography optical microlithography XIV, pp 1066–1073

    Google Scholar 

  • Wakabayashi O, Ariga T, Kumazaki T, Sasano K, Watanabe T, Yabu T, Hori T, Sumitani A, Kakizaki K, Mizoguchi H (22–27 February 2004) Optical microlithography XVII, Santa Clara [5377-187]

    Google Scholar 

  • Watanabe H, Kitatochi N, Kakizaki K, Tada A, Sakuma J, Ariga T, Hotta K (2001) Long pulse duration of F2 laser for 157 nm [ML 4346-109]. In: Lithography optical microlithography XIV, pp 1074–1079

    Google Scholar 

  • Yanase H, Sakugawa T, Koganezawa T, Kataoka Y, Wakabayashi O, Mizoguchi H, Aruga T (1995) Solid state pulse power generator for excimer laser. EDD-95-50-66, I.E.E. Japan, pp 71–78 (in Japanese)

    Google Scholar 

  • Yoshino M, Umeda H, Tsushima H, Watanabe H, Tanaka S, Matsumoto S, Onose T, Nogawa H, Kawasuji Y, Matsunaga T, Fujimoto J, Mizoguchi H (2010) Flexible and reliable high power injection locked laser for double exposure and double patterning ArF immersion lithography. Proc SPIE 7640, Optical microlithography XXIII, 76402A

    Google Scholar 

  • Yoshioka M, Kitagawa T, Arimoto T, Matsuno H, Hiramoto T, Suzuki T, Hotta K (2001) Br lamp for F2 laser wavelength calibration [ML4346-129]. In: Optical microlithography XIV, pp 1238–1243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakaru Mizoguchi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mizoguchi, H., Oga, T., Kakizaki, K., Fujimoto, J., Fechner, B. (2021). Excimer Lasers for Lithography and Annealing. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-63647-0_53

Download citation

Publish with us

Policies and ethics