Skip to main content

Laser Ablation in Liquids for Nanomaterial Synthesis and Applications

  • Reference work entry
  • First Online:
Handbook of Laser Micro- and Nano-Engineering

Abstract

Through years of development, laser ablation in liquids (LAL) has become a new branch of nanoscience for nanomaterial synthesis. LAL has shown many unique advantages compared with the traditional wet-chemistry synthesis technique, so do its resultant nanomaterials. Capable of introducing multiple physical fields such as magnetic, electric, and electrochemical fields and with the assistance of additives, LAL has been extremely enriched, benefiting from which many novel nanomaterials have been synthesized. Many post-treatment techniques such as thermal annealing and hydrothermal treatment can further diversify the products. So far, a large variety of nanomaterials including metal, metal alloy, oxide, carbide, sulfide, nitride, hydroxide, polymer-particle composites, and supported composites, made of a large number of elements in the periodic table, have been synthesized and applied in many fields including optics, catalysis, environment, energy, photoelectric, and so on. Considering many reviews and book chapters have been published to introduce the progress in LAL, to prevent a repetitive introduction, this chapter is merely intended to serve as a guide to demonstrate the advantages and capacities of LAL to help researchers gain a brief overview. This chapter may also help the interested readers quickly master the key points for materials synthesis, property control, and get to know the problems that need to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Reference

  • Amendola V et al (2020) Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells and doped oxide nanoparticles. Chem Eur J 26:9206–9242

    Article  Google Scholar 

  • Amendola V, Litti L, Meneghetti M (2013) LDI-MS assisted by chemical-free gold nanoparticles: enhanced sensitivity and reduced background in the low-mass region. Anal Chem 85:11747–11754

    Article  Google Scholar 

  • Amendola V, Meneghetti M (2013) What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem Chem Phys 15:3027–3046

    Article  Google Scholar 

  • Amendola V et al (2005) Synthesis of gold nanoparticles by laser ablation in toluene: quenching and recovery of the surface Plasmon absorption. J Phys Chem B 109:23125–23128

    Article  Google Scholar 

  • Amendola V et al (2016) Formation of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid environment. J Colloid Interface Sci 489:18–27

    Article  ADS  Google Scholar 

  • Bao H et al (2017) Ultrathin tin oxide layer-wrapped gold nanoparticles induced by laser ablation in solutions and their enhanced performances. J Colloid Interface Sci 489:92–99

    Article  ADS  Google Scholar 

  • Barcikowski S et al (2015) Solid solution magnetic FeNi nanostrand–polymer composites by connecting-coarsening assembly. J Mater Chem C 3:10699–10704

    Article  Google Scholar 

  • Barcikowski S et al (2007) Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Appl Phys Lett 91:083113

    Article  ADS  Google Scholar 

  • Binaymotlagh R et al (2016) In situ generation of the gold nanoparticles–bovine serum albumin (AuNPs–BSA) bioconjugated system using pulsed-laser ablation (PLA). Mater Chem Phys 177:360–370

    Article  Google Scholar 

  • Bharati SS, Moram CB, Soma VR (2018) Femtosecond laser fabricated Ag@ Au and Cu@ Au alloy nanoparticles for surface enhanced Raman spectroscopy based trace explosives detection. Front Phys 6:28

    Article  Google Scholar 

  • Cai Y et al (2020) Laser ablation in liquids for the assembly of Se@Au chain-oligomers with long-term stability for photothermal inhibition of tumor cells. J Colloid Interface Sci 566:284–295

    Article  ADS  Google Scholar 

  • Cannas M et al (2018) Enhancing the luminescence efficiency of silicon-nanocrystals by interaction with H+ ions. Phys Chem Chem Phys 20(15):10445–10449

    Article  Google Scholar 

  • Censabella M et al (2019) Laser ablation synthesis of mono- and bimetallic Pt and Pd nanoparticles and fabrication of Pt-Pd/graphene nanocomposites. Appl Surf Sci 475:494–503

    Article  ADS  Google Scholar 

  • Chewchinda P, Odawara O, Wada H (2014) The effect of energy density on yield of silicon nanoparticles prepared by pulsed laser ablation in liquid. Appl Phys A Mater Sci Process 117:131–135

    Article  ADS  Google Scholar 

  • Cho Y-S et al (2014) Preparation with laser ablation and photoluminescence of Y3Al5O12:Ce nanophosphors. Electron Mater Lett 10:461–465

    Article  ADS  Google Scholar 

  • Cristoforetti G et al (2010) Production of palladium nanoparticles by pulsed laser ablation in water and their characterization. J Phys Chem C 115:5073–5083

    Article  Google Scholar 

  • Dittrich S et al (2019) Comparison of the productivity and ablation efficiency of different laser classes for laser ablation of gold in water and air. Appl Phys A 125(6):432

    Article  ADS  Google Scholar 

  • Duffy MJ et al (2018) Towards optimized naphthalocyanines as sonochromes for photoacoustic imaging in vivo. Photo-Dermatology 9:49–61

    Google Scholar 

  • El-Nahass MM, Yaghmour S (2008) Effect of annealing temperature on the optical properties of thermally evaporated tin phthalocyanine thin films. Appl Surf Sci 255(5, Part 1):1631–1636

    Article  ADS  Google Scholar 

  • Enríquez-Sánchez N et al (2020) Influence of ablation time on the formation of manganese oxides synthesized by laser ablation of solids in liquids. Opt Laser Technol 131:106418

    Article  Google Scholar 

  • Farag AAM et al (2015) Nano-flower 2,3-naphthalocyanine heterojunction for optoelectronic applications. Synth Met 203:261–268

    Article  Google Scholar 

  • Fischer M et al (2016) In situ investigations of laser-generated ligand-free platinum nanoparticles by X-ray absorption spectroscopy: how does the immediate environment influence the particle surface? Langmuir 32:8793–8802

    Article  Google Scholar 

  • Fojtik A, Henglein A (1993) Laser ablation of films and suspended particles in a solvent : formation of cluster and colloid solutions. Berichte der Bunsen-Gesellschaft 97:252–254

    Article  Google Scholar 

  • Gellini C et al (2017) Magneto-Plasmonic colloidal nanoparticles obtained by laser ablation of nickel and silver targets in water. J Phys Chem C

    Google Scholar 

  • Hebié S et al (2015) Advanced electrocatalysts on the basis of bare Au nanomaterials for biofuel cell applications. ACS Catal 5:6489–6496

    Article  Google Scholar 

  • Henglein A (1993) Physicochemical properties of small metal particles in solution:" microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471

    Article  Google Scholar 

  • Hu S et al (2017) A facile and surfactant-free route for nanomanufacturing of tailored ternary nanoalloys as superior oxygen reduction reaction electrocatalysts. Cat Sci Technol 7:2074–2086

    Article  Google Scholar 

  • Hu S et al (2016a) PtCo/CoOx Nanocomposites: Bifunctional Electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions. Appl Catal B 182:286–296

    Article  Google Scholar 

  • Hu S et al (2016b) Tandem laser ablation synthesis in solution-galvanic replacement reaction (LASiS-GRR) for the production of PtCo nanoalloys as oxygen reduction electrocatalysts. J Power Sources 306:413–423

    Article  Google Scholar 

  • Hu X et al (2020) Ultrasonic-enhanced fabrication of metal nanoparticles by laser ablation in liquid. Ind Eng Chem Res 59(16):7512–7519

    Article  Google Scholar 

  • Huang C-C, Yeh C-S, Ho C-J (2004) Laser ablation synthesis of spindle-like gallium oxide hydroxide nanoparticles with the presence of cationic cetyltrimethylammonium bromide. J Phys Chem B 108:4940–4945

    Article  Google Scholar 

  • Intartaglia R et al (2013) Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications. Phys Chem Chem Phys 15:3075–3082

    Article  Google Scholar 

  • Ishikawa Y, Feng Q, Koshizaki N (2010) Growth fusion of submicron spherical boron carbide particles by repetitive pulsed laser irradiation in liquid media. Appl Phys A Mater Sci Process 99:797–803

    Article  ADS  Google Scholar 

  • Ishikawa Y et al (2006) Preparation of Fe–Pt alloy particles by pulsed laser ablation in liquid medium. Chem Phys Lett 428:426–429

    Article  ADS  Google Scholar 

  • Ishikawa Y et al (2007) Boron carbide spherical particles encapsulated in graphite prepared by pulsed laser irradiation of boron in liquid medium. Appl Phys Lett 91:161110

    Article  ADS  Google Scholar 

  • Jendrzej S et al (2016) Barrierless growth of precursor-free, ultrafast laser-fragmented Noble metal nanoparticles by colloidal atom clusters–a kinetic in situ study. J Colloid Interface Sci 463:299–307

    Article  ADS  Google Scholar 

  • Jendrzej S et al (2017) How size determines the value of gold: economic aspects of wet chemical and laser-based metal colloid synthesis. ChemPhysChem 18:1012–1019

    Article  Google Scholar 

  • Jo YK, Wen S-B (2013) Formation of Core–Shell micro/Nano particles through pulsed-laser deposition in liquid. J Phys D Appl Phys 46:035302

    Article  ADS  Google Scholar 

  • John MG, Tibbetts KM (2020) Controlling the morphology of copper-silica nanocomposites from laser ablation in liquid. Appl Surf Sci 510:145037

    Article  Google Scholar 

  • Kabashin AV et al (2019) Laser processed nanosilicon: a multifunctional nanomaterial for energy and health care. ACS Nano

    Google Scholar 

  • Kajiya D, Saitow K-i (2018) Si nanocrystal solution with stability for one year. RSC Adv 8(72):41299–41307

    Article  ADS  Google Scholar 

  • Kamp M et al (2018) Temperature dependent ultrastructure transformation of au-Fe nanoparticles investigated by in situ STEM. Cryst Growth Des 18:5434–5440

    Article  Google Scholar 

  • Kane KA, Bertino MF (2019) Pulsed laser synthesis of highly active Ag–Rh and Ag–Pt antenna–reactor-type plasmonic catalysts. Beilstein J Nanotechnol 10:1958–1963

    Article  Google Scholar 

  • Kanitz A et al (2017) Impact of liquid environment on femtosecond laser ablation. Appl Phys A 123(11):674

    Article  ADS  Google Scholar 

  • Kasuya R et al (2007) Characteristic optical properties of transparent color conversion film prepared from YAG:Ce3+ nanoparticles. Appl Phys Lett 91(11):111916

    Article  ADS  Google Scholar 

  • Kobayashi H et al (2014) Photovoltaic properties of Si-based quantum-dot-sensitized solar cells prepared using laser plasma in liquid. Jpn J Appl Phys 53(1):010208

    Article  ADS  Google Scholar 

  • Kobayashi H et al (2013) Effects of laser energy density on silicon nanoparticles produced using laser ablation in liquid. J Phys Conf Ser 441:012035

    Article  Google Scholar 

  • Kwon H et al (2014) The effects of ambient ions on the growth of gold nanoparticles by laser ablation in liquid. Bull Kor Chem Soc 35(3):865

    Article  Google Scholar 

  • LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  Google Scholar 

  • Law KY (1993) Organic photoconductive materials: recent trends and developments. Chem Rev 93(1):449–486

    Article  Google Scholar 

  • Letzel A et al (2017) Size quenching during laser synthesis of colloids happens already in the vapor phase of the cavitation bubble. J Phys Chem C 121:5356–5365

    Article  Google Scholar 

  • Letzel A et al (2019) On the time and mechanism of nanoparticle functionalization by macromolecular ligands during pulsed laser ablation in liquids. Langmuir 35:3038–3047

    Article  Google Scholar 

  • Li S et al (2014) Preparation and properties of Noble metal core/shell nanostructures prepared by excimer laser ablation in liquid solutions. J Laser Appl 26:022001

    Article  ADS  Google Scholar 

  • Li S et al (2013) Remarkably enhanced photocatalytic activity of laser ablated Au nanoparticle decorated BiFeO3 nanowires under visible-light. Chem Commun 49:5856–5858

    Article  Google Scholar 

  • Li W et al (2019) Ambient electrosynthesis of ammonia using Core–Shell structured Au@C catalyst fabricated by one-step laser ablation technique. ACS Appl Mater Interfaces 11(47):44186–44195

    Article  Google Scholar 

  • Liang D et al (2016) Co-doped Ni hydroxide and oxide nanosheet networks: laser-assisted synthesis, effective doping, and ultrahigh pseudocapacitor performance. J Mater Chem 4(27):10609–10617

    Article  Google Scholar 

  • Liang Y et al (2012a) Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance. CrystEngComm 14(9):3291–3296

    Article  Google Scholar 

  • Liang Y et al (2012b) ZnMoO4 micro- and nanostructures synthesized by electrochemistry-assisted laser ablation in liquids and their optical properties. Cryst Growth Des 12(9):4487–4493

    Article  Google Scholar 

  • Liang Y et al (2013) A microfibre assembly of an iron-carbon composite with giant magnetisation. Sci Rep 3:3051

    Article  Google Scholar 

  • Lim C-K et al (2018) Organic solvent and surfactant free fluorescent organic nanoparticles by laser ablation of aggregation-induced enhanced emission dyes. Adv Optical Mater:1800164

    Google Scholar 

  • Lin XZ et al (2009) Synthesis of CuO nanocrystals and sequential assembly of nanostructures with shape-dependent optical absorption upon laser ablation in liquid. J Phys Chem C 113:17543–17547

    Article  Google Scholar 

  • Lin Z et al (2017) Manipulating the hydrogen evolution pathway on composition-tunable CuNi nanoalloys. J Mater Chem A 5:773–781

    Article  Google Scholar 

  • Liu P et al (2011) A general strategy to fabricate simple Polyoxometalate nanostructures: electrochemistry-assisted laser ablation in liquid. ACS Nano 5(6):4748–4755

    Article  Google Scholar 

  • Mafuné F et al (2003) Formation of stable platinum nanoparticles by laser ablation in water. J Phys Chem B 107:4218–4223

    Article  Google Scholar 

  • Mafuné F et al (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120

    Article  Google Scholar 

  • Malviya KD, Chattopadhyay K (2016) Temperature- and size-dependent compositionally tuned microstructural landscape for Ag-46 atom % Cu nanoalloy prepared by laser ablation in liquid. J Phys Chem C 120:27699–27706

    Article  Google Scholar 

  • Malviya KD, Chattopadhyay K (2014) Synthesis and mechanism of composition and size dependent morphology selection in nanoparticles of Ag–Cu alloys processed by laser ablation under liquid medium. J Phys Chem C 118:13228–13237

    Article  Google Scholar 

  • Mansour N et al (2012) Blue-green luminescent silicon nanocrystals fabricated by nanosecond pulsed laser ablation in dimethyl sulfoxide. Opt Mater Express 2:740–748

    Article  ADS  Google Scholar 

  • Marzun G et al (2017) Role of dissolved and molecular oxygen on Cu and PtCu alloy particle structure during laser ablation synthesis in liquids. ChemPhysChem 18:1175–1184

    Article  Google Scholar 

  • Marzun G et al (2015) Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts. Appl Surf Sci 348:75–84

    Article  Google Scholar 

  • Messina GC et al (2013) Pulsed laser ablation of a continuously-fed wire in liquid flow for high-yield production of silver nanoparticles. Phys Chem Chem Phys 15:3093–3098

    Article  Google Scholar 

  • Mikhlin YL et al (2018) On the nature of citrate-derived surface species on ag nanoparticles: insights from X-ray photoelectron spectroscopy. Appl Surf Sci 427:687–694

    Article  ADS  Google Scholar 

  • Mobarak NN et al (2012) Chemical interaction and conductivity of carboxymethyl κ-carrageenan based green polymer electrolyte. Solid State Ionics 224:51–57

    Article  Google Scholar 

  • Monsa Y et al (2020) A simple strategy for enhanced production of nanoparticles by laser ablation in liquids. Nanotechnology 31(23):235601

    Article  ADS  Google Scholar 

  • Mostafa AM, Mwafy EA (2020) Synthesis of ZnO and Au@ZnO core/shell nano-catalysts by pulsed laser ablation in different liquid media. J Mater Res Technol 9:3241–3248

    Article  Google Scholar 

  • Mottu F et al (2000) Organic solvents for pharmaceutical parenterals and embolic liquids: a review of toxicity data. PDA J Pharm Sci Technol 54(6):456–469

    Google Scholar 

  • Nair GB, Swart HC, Dhoble SJ (2020) A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): phosphor synthesis, device fabrication and characterization. Prog Mater Sci 109:100622

    Article  Google Scholar 

  • Neumeister A et al (2014) Monophasic ligand-free alloy nanoparticle synthesis determinants during pulsed laser ablation of bulk alloy and consolidated microparticles in water. Phys Chem Chem Phys 16:23671–23678

    Article  Google Scholar 

  • Nikov RG et al (2017) Laser-assisted fabrication and size distribution modification of colloidal gold nanostructures by nanosecond laser ablation in different liquids. Appl Phys A 123(7):490

    Article  ADS  Google Scholar 

  • Nozik AJ (2002) Quantum dot solar cells. Phys E 14(1):115–120

    Article  Google Scholar 

  • Oko DN et al (2015) Dopamine and ascorbic acid electro-oxidation on Au, AuPt and Pt nanoparticles prepared by pulse laser ablation in water. Electrochim Acta 159:174–183

    Article  Google Scholar 

  • Oko DN et al (2014) Formic acid electro-oxidation at PtAu alloyed nanoparticles synthesized by pulsed laser ablation in liquids. J Power Sources 248:273–282

    Article  Google Scholar 

  • Park BK et al (2012) Selecting morphology of Y3Al5O12:Ce3+phosphors for minimizing scattering loss in the pc-LED package. J Electrochem Soc 159(4):J96–J106

    Article  Google Scholar 

  • Park GS et al (2008) Simple route for Y3A5O12:Ce3+ colloidal nanocrystal via laser ablation in deionized water and its luminescence. Electrochem Solid-State Lett 11(4):J23

    Article  Google Scholar 

  • Pattarin C et al (2013) Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid. Jpn J Appl Phys 52(2R):025001

    Article  Google Scholar 

  • Petersen S, Barcikowski S (2009) In situ bioconjugation: single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv Funct Mater 19:1167–1172

    Article  Google Scholar 

  • Qian W et al (2011) Highly efficient and controllable PEGylation of gold nanoparticles prepared by femtosecond laser ablation in water. J Phys Chem C 115:23293–23298

    Article  Google Scholar 

  • Qin W-J et al (2011) Control of cu-doping and optical properties of ZnO quantum dots by laser ablation of composite targets. Mater Chem Phys 130:425–430

    Article  Google Scholar 

  • Rehbock C et al (2014) Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. Beilstein J Nanotechnol 5:1523–1541

    Article  Google Scholar 

  • Rui M et al (2016) Ternary oxide nanocrystals: universal laser-hydrothermal synthesis, optoelectronic and electrochemical applications. Adv Funct Mater 26:5051–5060

    Article  Google Scholar 

  • Sajti CL et al (2011) Delay time and concentration effects during bioconjugation of nanosecond laser-generated nanoparticles in a liquid flow. J Phys Chem C 115(12):5094–5101

    Article  Google Scholar 

  • Sajti CL et al (2010) In-situ bioconjugation in stationary media and in liquid flow by femtosecond laser ablation. Appl Phys A Mater Sci Process 101:259–264

    Article  ADS  Google Scholar 

  • Santagata A et al (2015) Production of silver-silica core-shell nanocomposites using ultra-short pulsed laser ablation in nanoporous aqueous silica colloidal solutions. J Phys D Appl Phys 48:205304

    Article  ADS  Google Scholar 

  • Saraeva IN et al (2018) Laser synthesis of colloidal Si@Au and Si@Ag nanoparticles in water via plasma-assisted reduction. J Photochem Photobiol A: Chem

    Google Scholar 

  • Scaramuzza S et al (2016) Magnetically assembled SERS substrates composed of Iron–silver nanoparticles obtained by laser ablation in liquid. ChemPhysChem 18:1026–1034

    Article  Google Scholar 

  • Schaumberg CA, Wollgarten M, Rademann K (2014) Metallic copper colloids by reductive laser ablation of non metallic copper precursor suspensions. J Phys Chem A 118:8329–8337

    Article  Google Scholar 

  • Semaltianos NG et al (2013) Palladium or palladium hydride nanoparticles synthesized by laser ablation of a bulk palladium target in liquids. J Colloid Interface Sci 402:307–311

    Article  ADS  Google Scholar 

  • Stefanescu O et al (2013) Thermal behavior of Co(II) and Ni(II) hydroxycarboxylate complexes obtained by two original synthesis methods. J Therm Anal Calorim 113(3):1345–1354

    Article  Google Scholar 

  • Streubel R, Barcikowski S, Gökce B (2016) Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Opt Lett 41:1486–1489

    Article  ADS  Google Scholar 

  • Sugioka K, Cheng Y (2014) Femtosecond laser three-dimensional micro- and nanofabrication. Appl Phys Rev 1:041303

    Article  Google Scholar 

  • Svrcek V, Mariotti D, Kondo M (2009) Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water. Opt Express 17:520–527

    Article  ADS  Google Scholar 

  • Tamaki Y, Asahi T, Masuhara H (2000) Tailoring nanoparticles of aromatic and dye molecules by Excimer laser irradiation. Appl Surf Sci 168:85–88

    Article  ADS  Google Scholar 

  • Tamaki Y, Asahi T, Masuhara H (2002) Nanoparticle formation of Vanadyl Phthalocyanine by laser ablation of its crystalline powder in a poor solvent. J Phys Chem A 106:2135–2139

    Article  Google Scholar 

  • Tian Z et al (2012) Zinc Stannate Nanocubes and Nanourchins with high Photocatalytic activity for methyl orange and 2, 5-DCP degradation. J Mater Chem 22:17210–17214

    Article  Google Scholar 

  • Tilaki RM, Zad AI, Mahdavi SM (2007) Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids. Appl Phys A Mater Sci Process 88:415–419

    Article  ADS  Google Scholar 

  • Tsuji T et al (2009) Preparation of nano-sized functional materials using laser ablation in liquids. Appl Surf Sci 255:9626–9629

    Article  ADS  Google Scholar 

  • Tsuruoka N et al (2016) Facile preparation of YAG:Ce nanoparticles by laser irradiation in water and their optical properties. Springerplus 5(1):325

    Article  Google Scholar 

  • Usui H et al (2005) Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J Phys Chem B 109:120–124

    Article  Google Scholar 

  • Vaccaro L et al (2014) Luminescent silicon nanocrystals produced by near-infrared nanosecond pulsed laser ablation in water. Appl Surf Sci 302:62–65

    Article  ADS  Google Scholar 

  • Wagener P et al (2016) Solvent-surface interactions control the phase structure in laser-generated Iron-gold Core-Shell nanoparticles. Sci Rep 6:23352

    Article  ADS  Google Scholar 

  • Wakai F, Louzguine-Luzgin DV, Kuroda T (2009) A microscopic model of interface-reaction-controlled sintering of spherical particles of different phases. J Am Ceram Soc 92(8):1663–1671

    Article  Google Scholar 

  • Wang H, Odawara O, Wada H (2016) Facile and chemically pure preparation of YVO4: Eu3+ colloid with novel nanostructure via laser ablation in water. Sci Rep 6:20507

    Article  ADS  Google Scholar 

  • Wang H, Odawara O, Wada H (2017) Morphology and optical properties of YVO4:Eu3+ nanoparticles fabricated by laser ablation in ethanol. Appl Surf Sci 425:689–695

    Article  ADS  Google Scholar 

  • Xiao J et al (2017) External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog Mater Sci 87:140–220

    Article  Google Scholar 

  • Yanagihara R et al (2018) Fabrication of naphthalocyanine nanoparticles by laser ablation in liquid and application to contrast agents for photoacoustic imaging. Jpn J Appl Phys 57(3):035001

    Article  ADS  Google Scholar 

  • Yang L et al (2006) Direct growth of highly organized crystalline carbon nitride from liquid-phase pulsed laser ablation. Chem Mater 18:5058–5064

    Article  Google Scholar 

  • Ye Y et al (2015) Structural and electrochemical evaluation of a TiO2-graphene oxide based sandwich structure for lithium-ion battery anodes. RSC Adv 5(56):45038–45043

    Article  ADS  Google Scholar 

  • You H et al (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42(7):2880–2904

    Article  Google Scholar 

  • Zeng H et al (2012) Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 22:1333–1353

    Article  Google Scholar 

  • Zhang C et al (2020) Encapsulation of co-based nanoparticle in N-doped graphitic carbon for efficient oxygen reduction reaction. Carbon 156:31–37

    Article  Google Scholar 

  • Zhang D et al (2018a) Spontaneous shape alteration and size separation of surfactant-free silver particles synthesized by laser ablation in acetone during long-period storage. Nanomaterials 8:529

    Google Scholar 

  • Zhang D et al (2018b) Magnetic Fe@FeOx, Fe@C and α-Fe2O3 single-crystal nanoblends synthesized by femtosecond laser ablation of Fe in acetone. Nanomaterials 8:631

    Google Scholar 

  • Zhang D et al (2018c) Two birds with one stone: spontaneous size separation and growth inhibition of femtosecond laser-generated surfactant-free metallic nanoparticles via ex situ SU-8 functionalization. ACS Omega 3:10953–10966

    Article  Google Scholar 

  • Zhang D, Gökce B (2017) Perspective of laser-prototyping nanoparticle-polymer composites. Appl Surf Sci 392:991–1003

    Article  ADS  Google Scholar 

  • Zhang D, Gökce B, Barcikowski S (2017a) Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev 117:3990–4103

    Article  Google Scholar 

  • Zhang D et al (2015) Layered seed-growth of AgGe football-like microspheres via precursor-free picosecond laser synthesis in water. Sci Rep 5:13661

    Article  ADS  Google Scholar 

  • Zhang D et al (2016a) Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol. Appl Surf Sci 367:222–230

    Article  ADS  Google Scholar 

  • Zhang D et al (2017b) Recent advances in surfactant-free, surface charged and defect-rich catalysts developed by laser ablation and processing in liquids. ChemNanoMat 3:512–533

    Article  Google Scholar 

  • Zhang D, Liu J, Liang C (2017c) Perspective on how laser-ablated particles grow in liquids. Sci China Phys Mech Astron 60:074201

    Article  ADS  Google Scholar 

  • Zhang D et al (2017d) Formation mechanism of laser-synthesized iron-manganese alloy nanoparticles, manganese oxide nanosheets and nanofibers. Part Part Syst Charact 34:1600225

    Article  Google Scholar 

  • Zhang D et al (2019) Carbon-encapsulated metal/metal carbide/metal oxide Core-shell nanostructures generated by laser ablation of metals in organic solvents. ACS Appl Nano Mater 2:28–39

    Article  Google Scholar 

  • Zhang H et al (2013a) The formation of onion-like carbon-encapsulated cobalt carbide Core/Shell nanoparticles by the laser ablation of metallic cobalt in acetone. Carbon 55:108–115

    Article  Google Scholar 

  • Zhang H et al (2016b) A general strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode. Carbon 100:590–599

    Article  Google Scholar 

  • Zhang H et al (2013b) Synthesis of Mn-doped α-Ni(OH)2 nanosheets assisted by liquid-phase laser ablation and their electrochemical properties. Phys Chem Chem Phys 15:5684–5690

    Article  Google Scholar 

  • Zhang J, Chaker M, Ma D (2017e) Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. J Colloid Interface Sci 489:138–149

    Article  ADS  Google Scholar 

  • Zhang J et al (2013c) Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study. Appl Catal B 132:107–115

    Article  Google Scholar 

  • Zhang X et al (2006) Solvent-stabilized oxovanadium phthalocyanine nanoparticles and their application in xerographic photoreceptors. Langmuir 22(1):344–348

    Article  Google Scholar 

  • Zhao Y et al (2015) Synthesis and properties of Ag/ZnO core/shell nanostructures prepared by Excimer laser ablation in liquid. APL Mater 3:086103

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Wada .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, D., Wada, H. (2021). Laser Ablation in Liquids for Nanomaterial Synthesis and Applications. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-63647-0_30

Download citation

Publish with us

Policies and ethics