Skip to main content

Magnetotransport

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

In this chapter, magnetotransport phenomena in ferromagnetic materials and heterostructures are discussed. The survey starts with the definition of the electrical resistivity and a discussion of magnetoresistance in normal metals, semiconductors, and semimetals. This is followed by a description of magnetoresistance processes in ferromagnets: from anisotropic magnetoresistance and critical scattering in bulk ferromagnets to giant magnetoresistance in magnetic multilayers, colossal magnetoresistance in manganites, tunneling magnetoresistance in trilayers with insulating barrier, and to powder and organic magnetoresistance. The two-current model features prominently in the analysis of the majority of these effects. Sections on quantum transport and exotic tunneling phenomena follow. Then transverse electric phenomena are presented: the discussion of the normal and anomalous Hall effect leads to the introduction of spin currents and the spin Hall effects. The chapter concludes with a brief section on magnetoimpedance and an explanation of measurement techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ohm, G.S.: Die galvanische Kette. T. H. Riemann, Berlin (1827)

    Book  MATH  Google Scholar 

  2. Onsager, L.: Reciprocal relations in irreversible processes. Phys. Rev. 37, 405 (1931)

    Article  MATH  ADS  Google Scholar 

  3. Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 84th edn. CRC Press, Boca Raton (2003)

    Google Scholar 

  4. Ho, C.Y., Ackerman, M.W., Wu, K.Y., Havill, T.N., Bogaard, R.H., Matula, R.A., Oh, S.G., James, H.M.: Electrical resistivity of ten selected binary alloy systems. J. Phys. Chem. Ref. Data 12, 183 (1983)

    Article  ADS  Google Scholar 

  5. Ashcroft, N.W., Mermin, n.d.: Solid State Physics. Holt-Saunders Japan, Tokyo (1981)

    Google Scholar 

  6. Drude, P.: Zur Elektronentheorie der Metalle. Ann. Phys. 306, 566 (1900)

    Article  Google Scholar 

  7. Matthiessen, A., von Bose, M.: On the influence of temperature on the electric conducting power of metals. Phil. Trans. R. Soc. Lond. 152, 1 (1862)

    ADS  Google Scholar 

  8. Gerlach, W., Schneiderhan, K.: Ferromagnetismus und elektrische Eigenschaften. Widerstand, magnetische Widerstandsänderung und wahre Magnetisierung beim Curie-Punkt. Ann. Phys. 398, 772 (1930)

    Google Scholar 

  9. Mott, N.F.: Electrons in disordered structures. Adv. Phys. 16, 49 (1967)

    Article  ADS  Google Scholar 

  10. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  11. Mooij, J.H.: Electrical conduction in concentrated disordered transition metal alloys. Phys. Stat. Sol. (A) 17, 521 (1973)

    Google Scholar 

  12. Fisk, Z., Webb, G.W.: Saturation of the high-temperature normal-state electrical resistivity of superconductors. Phys. Rev. Lett. 36, 1084 (1976)

    Article  ADS  Google Scholar 

  13. Millis, A.J., Hu, J., Das Sarma, S.: Resistivity saturation revisited: results from a dynamical mean field theory. Phys. Rev. Lett. 82, 2354 (1999)

    Article  ADS  Google Scholar 

  14. Lee, P.A., Ramakrishnan, T.V.: Disordered electronic systems. Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  15. Bergmann, G.: Consistent temperature and field dependence in weak localization. Phys. Rev. B 28, 515 (1983)

    Article  ADS  Google Scholar 

  16. Campbell, I.A., Fert, A.: Transport properties of ferromagnets. In: Wohlfarth, E.P. (ed.) Ferromagnetic Materials, vol. 3, pp. 751–800. North-Holland Publishing Company, Amsterdam (1982)

    Google Scholar 

  17. Raquet, B., Viret, M., Sondergard, E., Céspedes, O., Mamy, R.: Electron-magnon scattering and magnetic resistivity in 3d ferromagnets. Phys. Rev. B 66, 024433 (2002)

    Article  ADS  Google Scholar 

  18. Du, X., Tsai, S.-W., Maslov, D.L., Hebard, A.F.: Metal-insulator-like behavior in semimetallic bismuth and graphite. Phys. Rev. Lett. 94, 166601 (2005)

    Article  ADS  Google Scholar 

  19. Kempa, H., Kopelevich, Y., Mrowka, F., Setzer, A., Torres, J.H.S, Höhne, R., Esquinazi, P.: Magnetic-field-driven superconductor-insulator-type transition in graphite. Solid State Commun. 115, 539 (2000)

    Article  ADS  Google Scholar 

  20. Kohler, M.: Zur magnetischen Widerstandsänderung reiner Metalle. Ann. Phys. 424, 211 (1938)

    Article  Google Scholar 

  21. Beer, A.C.: Galvanomagnetic Effects in Semiconductors. Academic Press, New York (1963)

    MATH  Google Scholar 

  22. Xu, R., Husmann, A., Rosenbaum, T.F., Saboungi, M.-L., Enderbya, J.E., Littlewood, P.B.: Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390, 57 (1997)

    Article  ADS  Google Scholar 

  23. McClure, J.W., Spry, W.J.: Linear magnetoresistance in the quantum limit in graphite. Phys. Rev. 165, 809 (1968)

    Article  ADS  Google Scholar 

  24. Friedman, A.L., Tedesco, J.L., Campbell, P.M., Culbertson, J.C., Aifer, E., Perkins, F.K., Myers-Ward, R.L., Hite, J.K., Eddy, C.R. Jr., Jernigan, G.G., Gaskill, D.K.: Quantum linear magnetoresistance in multilayer epitaxial graphene. Nano Lett. 10, 3962 (2010)

    Article  ADS  Google Scholar 

  25. Abrikosov, A.A.: Quantum magnetoresistance. Phys. Rev. B 58, 2788 (1998)

    Article  ADS  Google Scholar 

  26. Argyres, P.N.: Quantum theory of longitudinal magneto-resistance. J. Phys. Chem. Solids 4, 19 (1958)

    Article  ADS  Google Scholar 

  27. Adams, E.N., Holstein, T.D.: Quantum theory of transverse galvano-magnetic phenomena. J. Phys. Chem. Solids 10, 254 (1959)

    Article  ADS  Google Scholar 

  28. Thomson, W.: On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron. Proc. R. Soc. (Lond.) 8, 546 (1857)

    Google Scholar 

  29. McGuire, T.R., Potter, R.I.: Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Mag. 11, 1018 (1975)

    Article  ADS  Google Scholar 

  30. Döring, W.: Die Abhängigkeit des Widerstandes von Nickelkristallen von der Richtung der spontanen Magnetisierung. Ann. Phys. 424, 259 (1938)

    Article  Google Scholar 

  31. Döring, W., Simon, G.: Die Richtungsabhängigkeit der Magnetostriktion. Ann. Phys. 460, 373 (1960)

    Article  Google Scholar 

  32. Birss, R.R.: Symmetry and Magnetism. North-Holland, Amsterdam (1964)

    MATH  Google Scholar 

  33. Ziese, M., Vrejoiu, I., Hesse, D.: Structural symmetry and magnetocrystalline anisotropy of SrRuO3 films on SrTiO3. Phys. Rev. B 81, 184418 (2010)

    Article  ADS  Google Scholar 

  34. Tang, H.X., Kawakami, R.K., Awschalom, D.D., Roukes, M.L.: Giant planar Hall effect in epitaxial (Ga,Mn)As devices. Phys. Rev. Lett. 90, 107201 (2003)

    Google Scholar 

  35. Bason, Y., Klein, L., Yau, J.-B., Hong, X., Ahn, C.H.: Giant planar Hall effect in colossal magnetoresistive La0.84Sr0.16MnO3 thin films. Appl. Phys. Lett. 84, 2593 (2004)

    Google Scholar 

  36. Mott, N.F.: The electrical conductivity of transition metals. Proc. R. Soc. 153, 699 (1936)

    ADS  Google Scholar 

  37. Mott, N.F.: The resistance and thermoelectric properties of the transition metals. Proc. R. Soc. 156, 368 (1936)

    ADS  Google Scholar 

  38. Dorleijn, J.W.F., Miedema, A.R.: A quantitative investigation of the two current conduction in nickel alloys. J. Phys. F 5, 487 (1975)

    Article  ADS  Google Scholar 

  39. Dorleijn, J.W.F.: Electrical conduction in ferromagnetic metals. Philips Res. Rep. 31, 287 (1976)

    Google Scholar 

  40. Fert, A., Campbell, I.A.: Electrical resistivity of ferromagnetic nickel and iron based alloys. J. Phys. F 6, 849 (1976)

    Article  ADS  Google Scholar 

  41. Ross, R.N., Price, D.C., Williams, G.: Resistivity and magnetoresistance anisotropy associated with s, p impurities in ferromagnetic Ni and Co. J. Phys. F 8, 2367 (1978)

    Google Scholar 

  42. Ross, R.N., Price, D.C., Williams, G.: Spontaneous magnetoresistance anisotropy and deviations from Matthiessen’s rule induced by 5s, p impurities in Fe. J. Magn. Magn. Mater. 10, 59 (1979)

    Google Scholar 

  43. Smit, J.: Magnetoresistance of ferromagnetic metals and alloys at low temperatures. Physica 17, 612 (1951)

    Article  ADS  Google Scholar 

  44. Campbell, I.A., Fert, A., Jaoul, O.: The spontaneous resistivity anisotropy in Ni-based alloys. J. Phys. C 3, S95 (1970)

    Article  ADS  Google Scholar 

  45. Malozemoff, A.P.: Anisotropic magnetoresistance with cubic anisotropy and weak ferromagnetism: a new paradigm. Phys. Rev. B 34, 1853 (1986)

    Article  ADS  Google Scholar 

  46. Jaoul, O., Campbell, I.A., Fert, A.: Spontaneous resistivity anisotropy in Ni alloys. J. Magn. Magn. Mater. 5, 23 (1977)

    Article  ADS  Google Scholar 

  47. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M.B., Sowers, H.: Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442 (1986)

    Article  ADS  Google Scholar 

  48. Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  49. Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828 (1989)

    Article  ADS  Google Scholar 

  50. Dieny, B.: Giant magnetoresistance in spin-valve multilayers. J. Magn. Magn. Mater. 136, 335 (1994)

    Article  ADS  Google Scholar 

  51. Parkin, S.S.P., More, N., Roche, K.P.: Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64, 2304 (1990)

    Article  ADS  Google Scholar 

  52. Edwards, D.M., Mathon, J., Muniz, R.B.: A resistor network theory of the giant magnetoresistance in magnetic superlattices. IEEE Trans. Mag. 21, 3548 (1991)

    Article  ADS  Google Scholar 

  53. Mathon, J.: Exchange interactions and giant magnetoresistance in magnetic multilayers. Contemp. Phys. 32, 143 (1991)

    Article  ADS  Google Scholar 

  54. Mathon, J.: Phenomenological theory of giant magnetoresistance. In: Ziese, M., Thornton, M.J. (eds.) Spin Electronics, pp. 71–88. Springer, Berlin/Heidelberg (2001)

    Chapter  Google Scholar 

  55. Johnson, M., Silsbee, R.H.: Spin-injection experiment. Phys. Rev. B 37, 5326 (1988)

    Article  ADS  Google Scholar 

  56. van Son, P.C., van Kempen, H., Wyder, P.: Boundary resistance of the ferromagnetic-nonferromagnetic metal interface. Phys. Rev. Lett. 58, 2271 (1987)

    Article  ADS  Google Scholar 

  57. Valet, T., Fert, A.: Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48, 7099 (1993)

    Article  ADS  Google Scholar 

  58. Park, B.G., Wunderlich, J., Martí, X., Holý, V., Kurosaki, Y., Yamada, M., Yamamoto, H., Nishide, A., Hayakawa, J., Takahashi, H., Shick, A.B., Jungwirth, T.: A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347 (2011)

    Article  ADS  Google Scholar 

  59. Gould, C., Rüster, C., Jungwirth, T., Girgis, E., Schott, G.M., Giraud, R., Brunner, K., Schmidt, G., Molenkamp, L.W.: Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004)

    Article  ADS  Google Scholar 

  60. von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., Samwer, K.: Giant negative magnetoresistance in perovskitelike La2∕3Ba1∕3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331 (1993)

    Article  ADS  Google Scholar 

  61. Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., Chen, L.H.: Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413 (1994)

    Article  ADS  Google Scholar 

  62. Searle, C.W., Wang, S.T.: Studies of the ionic ferromagnet (LaPb)MnO3. Electric transport and ferromagnetic properties. Can. J. Phys. 48, 2023 (1970)

    Google Scholar 

  63. Fontcuberta, J., Martínez, B., Seffar, A., Piñol, S., García-Muñoz, J.L., Obradors, X.: Colossal magnetoresistance of ferromagnetic manganites: structural tuning and mechanisms. Phys. Rev. Lett. 76, 1122 (1996)

    Article  ADS  Google Scholar 

  64. Ziese, M., Srinitiwarawong, C.: Extraordinary Hall effect in La0.7Ca0.3MnO3 and La0.7Ba0.3MnO3 thin films. Europhys. Lett. 45, 256 (1999)

    Google Scholar 

  65. Ramirez, A.P.: Colossal magnetoresistance. J. Phys.: Condens. Matter 9, 8171 (1997)

    ADS  Google Scholar 

  66. Fujishiro, H., Fukase, T., Ikebe, M.: Charge ordering and sound velocity anomaly in La1−xSrxMnO3 (x ≥ 0.5). J. Phys. Soc. Jpn. 67, 2582 (1998)

    Google Scholar 

  67. Shenoy, V.B., Rao, C.N.R.: Electronic phase separation and other novel phenomena and properties exhibited by mixed-valent rare-earth manganites and related materials. Phil. Trans. R. Soc. A 366, 63 (2008)

    Article  ADS  Google Scholar 

  68. Jonker, G., van Santen, J.: Ferromagnetic compounds of manganese with perovskite structure. Physica 16, 337 (1950)

    Article  ADS  Google Scholar 

  69. Coey, J.M.D., Viret, M., von Molnár, S.: Mixed-valence manganites. Adv. Phys. 48, 167 (1999)

    Article  ADS  Google Scholar 

  70. Zener, C.: Interaction between the d-shells in the transition metals. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951)

    Google Scholar 

  71. de Gennes, P.G.: Effects of double exchange in magnetic crystals. Phys. Rev. 118, 141 (1960)

    Article  ADS  Google Scholar 

  72. Böttcher, D., Henk, J.: Magnetic properties of strained La2∕3Sr1∕3MnO3 perovskites from first principles. J. Phys.: Condens. Matter 25, 136005 (2013)

    ADS  Google Scholar 

  73. Salomon, M.B., Jaime, M.: The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583 (2001)

    Article  ADS  Google Scholar 

  74. Millis, A.J., Littlewood, P.B., Shraiman, B.I.: Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144 (1995)

    Article  ADS  Google Scholar 

  75. J. M. D Coey, Viret, M., Ranno, L., and Ounadjela, K.: Electron localization in mixed-valence manganites. Phys. Rev. Lett. 75, 3910 (1995)

    Google Scholar 

  76. Dagotto, E., Hotta, T., Moreo, A.: Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1 (2001)

    Article  ADS  Google Scholar 

  77. Ziese, M. and Vrejoiu, I.: Properties of manganite/ruthenate superlattices with ultrathin layers. Phys. Status Solidi RRL 7, 243 (2013)

    Article  Google Scholar 

  78. de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  79. Hwang, H.Y., Cheong, S.-W., Ong, N.P., Batlogg, B.: Spin-polarized intergrain tunneling in La2∕3Sr1∕3MnO3. Phys. Rev. Lett. 77, 2041 (1996)

    Article  ADS  Google Scholar 

  80. Gupta, A., Gong, G.Q., Xiao, G., Duncombe, P.R., Lecoeur, P., Trouilloud, P., Wang, Y.Y., Dravid, V.P., Sun, J.Z.: Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. Phys. Rev. B 54, R15629 (1996)

    Article  ADS  Google Scholar 

  81. Ziese, M.: Extrinsic magnetotransport phenomena in ferromagnetic oxides. Rep. Prog. Phys. 65, 143 (2002)

    Article  ADS  Google Scholar 

  82. Tedrow, P.M., Meservey, R.: Spin-dependent tunneling into ferromagnetic nickel. Phys. Rev. Lett. 26, 192 (1971)

    Article  ADS  Google Scholar 

  83. Tedrow, P.M., Meservey, R.: Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. Phys. Rev. B 7, 318 (1973)

    Article  ADS  Google Scholar 

  84. Meservey, R., Tedrow, P.M.: Spin-polarized electron tunneling. Phys. Rep. 238, 173 (1994)

    Article  ADS  Google Scholar 

  85. Soulen, R.J. Jr., Byers, J.M., Osofsky, M.S., Nadgorny, B., Ambrose, T., Cheng, S.F., Broussard, P.R., Tanaka, C.T., Nowak, J., Moodera, J.S., Barry, A., Coey, J.M.D.: Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85 (1998)

    Article  ADS  Google Scholar 

  86. Bugoslavsky, Y., Miyoshi, Y., Clowes, S.K., Branford, W.R., Lake, M., Brown, I., Caplin, A.D., Cohen, L.F.: Possibilities and limitations of point-contact spectroscopy for measurements of spin polarization. Phys. Rev. B 71, 104523 (2005)

    Article  ADS  Google Scholar 

  87. Mazin, I.I.: How to define and calculate the degree of spin polarization in ferromagnets. Phys. Rev. Lett. 83, 1427 (1999)

    Article  ADS  Google Scholar 

  88. Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. 54A, 225 (1975)

    Article  ADS  Google Scholar 

  89. Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273 (1995)

    Article  ADS  Google Scholar 

  90. Åkerman, J.J., Slaughter, J.M., Dave, R.W., Schuller, I.K.: Tunneling criteria for magnetic-insulator-magnetic structures. Appl. Phys. Lett. 79, 3104 (2001)

    Article  ADS  Google Scholar 

  91. Bowen, M., Bibes, M., Barthélémy, A., Contour, J.-P., Anane, A., Lemaître, Y., Fert, A.: Nearly total spin polarization in La2∕3Sr1∕3MnO3 from tunneling experiments. Appl. Phys. Lett. 82, 233 (2003)

    Article  ADS  Google Scholar 

  92. Faure-Vincent, J., Tiusan, C., Jouguelet, E., Canet, F., Sajieddine, M., Bellouard, C., Popova, E., Hehn, M., Montaigne, F., Schuhl, A.: High tunnel magnetoresistance in epitaxial Fe/MgO/Fe tunnel junctions. Appl. Phys. Lett. 82, 4507 (2003)

    Article  ADS  Google Scholar 

  93. Johnson, P.D., Güntherodt, G.: Spin-polarized photoelectron spectroscopy as a probe of magnetic systems. In: Kronmüller, H., Parkin, S.S.P. (eds.) Handbook of Magnetism and Advanced Magnetic Materials, pp. 1635–1657. Wiley, Chichester (2007)

    Google Scholar 

  94. Monsma, D.J., Parkin, S.S.P.: Spin polarization of tunneling current from ferromagnet/Al2O3 interfaces using copper-doped aluminum superconducting films. Appl. Phys. Lett. 77, 720 (2000)

    Article  ADS  Google Scholar 

  95. Yates, K.A., Branford, W.R., Magnus, F., Miyoshi, Y., Morris, B., Cohen, L.F., Sousa, P.M., Conde, O., Silvestre, A.J.: The spin polarization of CrO2 revisited. Appl. Phys. Lett. 91, 172504 (2007)

    Article  ADS  Google Scholar 

  96. Hu, G., Suzuki, Y.: Negative spin polarization of Fe3O4 in magnetite/manganite-based junctions. Phys. Rev. Lett. 89, 276601 (2002)

    Article  ADS  Google Scholar 

  97. Nadgorny, B., Osofsky, M.S., Singh, D.J., Woods, G.T., Soulen, R.J. Jr., Lee, M.K., Bu, S.D., Eom, C.B.: Measurements of spin polarization of epitaxial SrRuO3 thin films. Appl. Phys. Lett. 82, 427 (2003)

    Article  ADS  Google Scholar 

  98. Sinković, B., Shekel, E., Hulbert, S.L.: Spin-resolved iron surface density of states. Phys. Rev. B 52, R8696 (1995)

    Article  ADS  Google Scholar 

  99. Rampe, A., Hartmann, D., Weber, W., Popovic, S., Reese, M., Güntherodt, G.: Induced spin polarization and interlayer exchange coupling of the systems Rh/Co(0001) and Ru/Co(0001). Phys. Rev. B 51, 3230 (1995)

    Article  ADS  Google Scholar 

  100. Eib, W., Alvarado, S.F.: Spin-polarized photoelectrons from nickel single crystals. Phys. Rev. Lett. 37, 444 (1976)

    Article  ADS  Google Scholar 

  101. Park, J.-H., Vescovo, E., Kim, H.-J., Kwon, C., Ramesh, R., Venkatesan, T.: Magnetic properties at surface boundary of a half-metallic ferromagnet La0.7Sr0.3MnO3. Phys. Rev. Lett. 81, 1953 (1998)

    Google Scholar 

  102. Dedkov, Y.S., Fonin, M., König, C., Rüdiger, U., Güntherodt, G., Senz, S., Hesse, D.: Room-temperature observation of high-spin polarization of epitaxial CrO2(100) island films at the fermi energy. Appl. Phys. Lett. 80, 4181 (2002)

    Article  ADS  Google Scholar 

  103. Fonin, M., Pentcheva, R., Dedkov, Y.S., Sperlich, M., Vyalikh, D.V., Scheffler, M., Rüdiger, U., Güntherodt, G.: Surface electronic structure of the Fe3O4(100): evidence of a half-metal to metal transition. Phys. Rev. B 72, 104436 (2005)

    Article  ADS  Google Scholar 

  104. Tsymbal, E.Y., Mryasov, O.N., LeClair, P.R.: Spin-dependent tunnelling in magnetic tunnel junction. J. Phys.: Condens. Matter 15, R109 (2003)

    ADS  Google Scholar 

  105. Moodera, J.S., Nowak, J., van de Veerdonk, R.J.M.: Interface magnetism and spin wave scattering in ferromagnet-insulator-ferromagnet tunnel junctions. Phys. Rev. Lett. 80, 2941 (1998)

    Article  ADS  Google Scholar 

  106. Brinkman, W.F., Dynes, R.C., Rowell, J.M.: Tunneling conductance of asymmetrical barriers. J. Appl. Phys. 41, 1915 (1970)

    Article  ADS  Google Scholar 

  107. De Teresa, J.M., Barthélémy, A., Fert, A., Contour, J.P., Lyonnet, R., Montaigne, F., Seneor, P., Vaurès, A.: Inverse tunnel magnetoresistance in Co/SrTiO3/La0.7Sr0.3MnO3: new ideas on spin-polarized tunneling. Phys. Rev. Lett. 82, 4288 (1999)

    Google Scholar 

  108. Jo, M.-H., Mathur, n.d., Todd, N.K., Blamire, M.G.: Very large magnetoresistance and coherent switching in half-metallic manganite tunnel junctions. Phys. Rev. B 61, R14905 (2000)

    Google Scholar 

  109. Mathon, J., Umerski, A.: Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 63, 220403(R) (2001)

    Google Scholar 

  110. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868 (2004)

    Article  ADS  Google Scholar 

  111. Parkin, S.P.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., Yang, S.-H.: Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862 (2004)

    Article  ADS  Google Scholar 

  112. Djayaprawira, D.D., Tsunekawa, K., Nagai, M., Maehara, H., Yamagata, S., Watanabe, N., Yuasa, S., Suzuki, Y., Ando, K.: 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Lett. 86, 092502 (2005)

    Article  ADS  Google Scholar 

  113. Kaiser, C., Panchula, A.F., Parkin, S.S.P.: Finite tunneling spin polarization at the compensation point of rare-earth-metal-transition-metal alloys. Phys. Rev. Lett. 95, 047202 (2005)

    Article  ADS  Google Scholar 

  114. Wiesendanger, R.: Single-atom magnetometry. Curr. Opin. Solid State Mater. Sci. 15, 1 (2011)

    Article  ADS  Google Scholar 

  115. Ding, H.F., Wulfhekel, W., Kirschner, J.: Ultra sharp domain walls in the closure domain pattern of Co(0001). Europhys. Lett. 57, 100 (2002)

    Article  ADS  Google Scholar 

  116. Oka, H., Tao, K., Wedekind, S., Rodary, G., Stepanyuk, V.S., Sander, D., Kirschner, J.: Spatially modulated tunnel magnetoresistance on the nanoscale. Phys. Rev. Lett. 107, 187201 (2011)

    Article  ADS  Google Scholar 

  117. Ferriani, P., von Bergmann, K., Vedmedenko, E.Y., Heinze, S., Bode, M., Heide, M., Bihlmayer, G., Blügel, S., Wiesendanger, R.: Atomic-scale spin spiral with a unique rotational sense: Mn monolayer on W(001). Phys. Rev. Lett. 101, 027201 (2008)

    Article  ADS  Google Scholar 

  118. Heinze, S., von Bergmann, K., Menzel, M., Brede, J., Kubetzka, A., Wiesendanger, R., Bihlmayer, G., Blügel, S.: Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713 (2011)

    Article  Google Scholar 

  119. Coey, J.M.D., Berkowitz, A.E., Balcells, L., Putris, F.F., Parker, F.T.: Magnetoresistance of magnetite. Appl. Phys. Lett. 72, 734 (1998)

    Article  ADS  Google Scholar 

  120. Coey, J.M.D., Berkowitz, A.E., Balcells, L., Putris, F.F., Barry, A.: Magnetoresistance of chromium dioxide powder compacts. Phys. Rev. Lett. 80, 3815 (1998)

    Article  ADS  Google Scholar 

  121. Coey, J.M.D.: Powder magnetoresistance. J. Appl. Phys. 85, 5576 (1999)

    Article  ADS  Google Scholar 

  122. Francis, T.L., Mermer, Ö., Veeraraghavan, G., Wohlgenannt, M.: Large magnetoresistance at room temperature in semiconducting polymer sandwich devices. New J. Phys. 6, 185 (2004)

    Article  ADS  Google Scholar 

  123. Bloom, F.L., Wagemans, W., Kemerink, M., Koopmans, B.: Separating positive and negative magnetoresistance in organic semiconductor devices. Phys. Rev. Lett. 99, 257201 (2007)

    Article  ADS  Google Scholar 

  124. Bergeson, J.D., Prigodin, V.N., Lincoln, D.M., Epstein, A.J.: Inversion of magnetoresistance in organic semiconductors. Phys. Rev. Lett. 100, 067201 (2008)

    Article  ADS  Google Scholar 

  125. Hu, B., Wu, Y.: Tuning magnetoresistance between positive and negative values in organic semiconductors. Nat. Mater. 6, 985 (2007)

    Article  ADS  Google Scholar 

  126. Wohlgenannt, M., Bobbert, P.A., Koopmans, B.: Intrinsic magnetic field effects in organic semiconductors. MRS Bull. 39, 590 (2014)

    Article  Google Scholar 

  127. Majumdar, S., Lill, J.-O., Rajander, J., Majumdar, H.: Observation of ferromagnetic ordering in conjugated polymers exhibiting OMAR effect. Org. Electron. 21, 66 (2015)

    Article  Google Scholar 

  128. Landauer, R.: Conductance determined by transmission: probes and quantised constriction resistance. J. Phys.: Condens. Matter 1, 8099 (1989)

    ADS  Google Scholar 

  129. Wharam, D.A., Thornton, T.J., Newbury, R., Pepper, M., Ahmed, H., Frost, J.E.F., Hasko, D.G., Peacock, D.C., Ritchie, D.A., Jones, G.A.C.: One-dimensional transport and the quantisation of the ballistic resistance. J. Phys. C: Solid State Phys. 21, L209 (1988)

    Article  ADS  Google Scholar 

  130. Ohnishi, H., Kondo, Y., Takayanagi, K.: Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780 (1998)

    Article  ADS  Google Scholar 

  131. Ono, T., Ooka, Y., Miyajima, H., Otani, Y.: 2e2/h to e2/h switching of quantum conductance associated with a change in nanoscale ferromagnetic domain structure. Appl. Phys. Lett. 75, 1622 (1999)

    Article  ADS  Google Scholar 

  132. García, N., Muñoz, M., Zhao, Y.-W.: Magnetoresistance in excess of 200% in ballistic ni nanocontacts at room temperature and 100 oe. Phys. Rev. Lett. 82, 2923 (1999)

    Article  ADS  Google Scholar 

  133. Versluijs, J.J., Bari, M.A., Coey, J.M.D.: Magnetoresistance of half-metallic oxide nanocontacts. Phys. Rev. Lett. 87, 026601 (2001)

    Article  ADS  Google Scholar 

  134. Chung, S.H., Muñoz, M., García, N., Egelhoff, W.F., Gomez, R.D.: Universal scaling of ballistic magnetoresistance in magnetic nanocontacts. Phys. Rev. Lett. 89, 287203 (2002)

    Article  ADS  Google Scholar 

  135. Céspedes, O., Watts, S.M., Coey, J.M.D., Dörr, K., Ziese, M.: Magnetoresistance and electrical hysteresis in stable half-metallic La0.7Sr0.3MnO3 and Fe3O4 nanoconstrictions. Appl. Phys. Lett. 87, 083102 (2005)

    Google Scholar 

  136. Bruno, P.: Geometrically constrained magnetic wall. Phys. Rev. Lett. 83, 2425 (1999)

    Article  ADS  Google Scholar 

  137. Tatara, G., Zhao, Y.-W., Muñoz, M., García, N.: Domain wall scattering explains 300% ballistic magnetoconductance of nanocontacts. Phys. Rev. Lett. 83, 2030 (1999)

    Article  ADS  Google Scholar 

  138. Gregg, J.F., Petej, I., Jouguelet, E., Dennis, C.: Spin electronics – a review. J. Phys. D: Appl. Phys. 35, R121 (2002)

    Article  ADS  Google Scholar 

  139. Yakushiji, K., Mitani, S., Ernult, F., Takanashi, K., Fujimori, H.: Spin-dependent tunneling and coulomb blockade in ferromagnetic nanoparticles. Phys. Rep. 451, 1 (2007)

    Article  ADS  Google Scholar 

  140. Yuasa, S., Nagahama, T., Suzuki, Y.: Spin-polarized resonant tunneling in magnetic tunnel junctions. Science 297, 234 (2002)

    Article  ADS  Google Scholar 

  141. Lüders, U., Bibes, M., Bouzehouane, K., Jacquet, E., Contour, J.-P., Fusil, S., Bobo, J.-F., Fontcuberta, J., Barthélémy, A., Fert, A.: Spin filtering through ferrimagnetic NiFe2O4 tunnel barriers. Appl. Phys. Lett. 88, 082505 (2006)

    Article  ADS  Google Scholar 

  142. Garcia, V., Bibes, M., Bocher, L., Valencia, S., Kronast, F., Crassous, A., Moya, X., Enouz-Vedrenne, S., Gloter, A., Imhoff, D., Deranlot, C., Mathur, n.d., Fusil, S., Bouzehouane, K., Barthélémy, A.: Ferroelectric control of spin polarization. Science 327, 1106 (2010)

    Google Scholar 

  143. Gajek, M., Bibes, M., Fusil, S., Bouzehouane, K., Fontcuberta, J., Barthélémy, A., Fert, A.: Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296 (2007)

    Article  ADS  Google Scholar 

  144. Schelp, L.F., Fert, A., Fettar, F., Holody, P., Lee, S.F., Maurice, J.L., Petroff, F., Vaurès, A.: Spin-dependent tunneling with coulomb blockade. Phys. Rev. B 56, R5747 (1997)

    Article  ADS  Google Scholar 

  145. Guéron, S., Deshmukh, M.M., Myers, E.B., Ralph, D.C.: Tunneling via individual electronic states in ferromagnetic nanoparticle. Phys. Rev. Lett. 83, 4148 (1999)

    Article  ADS  Google Scholar 

  146. Graf, H., Vancea, J., Hoffmann, H.: Single-electron tunneling at room temperature in cobalt nanoparticles. Appl. Phys. Lett. 80, 1264 (2002)

    Article  ADS  Google Scholar 

  147. Barnaś, J., Fert, A.: Magnetoresistance oscillations due to charging effects in double ferromagnetic tunnel junctions. Phys. Rev. Lett. 80, 1058 (1998)

    Article  ADS  Google Scholar 

  148. Barnaś, J., Fert, A.: Effects of spin accumulation on single-electron tunneling in a double ferromagnetic microjunction. Europhys. Lett. 44, 85 (1998)

    Article  ADS  Google Scholar 

  149. Barnaś, J., Fert, A.: Interplay of spin accumulation and coulomb blockade in double ferromagnetic junctions. J. Magn. Magn. Mater. 192, L391 (1999)

    Article  ADS  Google Scholar 

  150. Esaki, L.: New phenomenon in narrow Germanium p − n junctions. Phys. Rev. 109, 603 (1958)

    Google Scholar 

  151. Itoh, H., Inoue, J., Umerski, A., Mathon, J.: Quantum oscillation of magnetoresistance in tunneling junctions with a nonmagnetic spacer. Phys. Rev. B 68, 174421 (2003)

    Article  ADS  Google Scholar 

  152. Moodera, J.S., Santos, T.S., Nagahama, T.: The phenomena of spin-filter tunnelling. J. Phys.: Condens. Matter 19, 165202 (2007)

    ADS  Google Scholar 

  153. Kok, M., Beukers, J.N., Brinkman, A.: Spin-polarized tunneling through a ferromagnetic insulator. J. Appl. Phys. 105, 07C919 (2009)

    Google Scholar 

  154. Caffrey, N.M., Fritsch, D., Archer, T., Sanvito, S., Ederer, C.: Spin-filtering efficiency of ferrimagnetic spinels CoFe2O4 and NiFe2O4. Phys. Rev. B 87, 024419 (2013)

    Article  ADS  Google Scholar 

  155. Santos, T.S., Moodera, J.S.: Observation of spin filtering with a ferromagnetic EuO tunnel barrier. Phys. Rev. B 69, 241203(R) (2004)

    Google Scholar 

  156. Gajek, M., Bibes, M., Varela, M., Fontcuberta, J., Herranz, G., Fusil, S., Bouzehouane, K., Barthélémy, A., Fert, A.: La2∕3Sr1∕3MnO3-La0.1Bi0.9MnO3 heterostructures for spin filtering. J. Appl. Phys. 99, 08E504 (2006)

    Google Scholar 

  157. Tsymbal, E.Y., Kohlstedt, H.: Tunneling across a ferroelectric. Science 313, 181 (2006)

    Article  Google Scholar 

  158. Garcia, V., Bibes, M.: Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 5, 4289 (2014)

    Article  ADS  Google Scholar 

  159. Kohlstedt, H., Petraru, A., Szot, K., Rüdiger, A., Meuffels, P., Haselier, H., Waser, R., Nagarajan, V.: Method to distinguish ferroelectric from nonferroelectric origin in case of resistive switching in ferroelectric capacitors. Appl. Phys. Lett. 92, 062907 (2008)

    Article  ADS  Google Scholar 

  160. Pantel, D., Haidong, H., Goetze, S., Werner, P., Kim, D.J., Gruverman, A., Hesse, D., Alexe, M.: Tunnel electroresistance in junctions with ultrathin ferroelectric Pb(Zr0.2Ti0.8)O3 barriers. Appl. Phys. Lett. 100, 232902 (2012)

    Google Scholar 

  161. Pantel, D., Goetze, S., Hesse, D., Alexe, M.: Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat. Mater. 11, 289 (2012)

    Article  ADS  Google Scholar 

  162. Quindeau, A., Fina, I., Marti, X., Apachitei, G., Ferrer, P., Nicklin, C., Pippel, E., Hesse, D., Alexe, M.: Four-state ferroelectric spin-valve. Sci. Rep. 5, 9749 (2015)

    Article  ADS  Google Scholar 

  163. Béa, H., Gajek, M., Bibes, M., Barthélémy, A.: Spintronics with multiferroics. J. Phys.: Condens. Matter 20, 434221 (2008)

    ADS  Google Scholar 

  164. Bibes, M., Villegas, J.E., Barthélémy, A.: Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 60, 5 (2011)

    Article  ADS  Google Scholar 

  165. Fusil, S., Garcia, V., Barthélémy, A., Bibes, M.: Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res. 44, 91 (2014)

    Article  ADS  Google Scholar 

  166. Hall, E.H.: On a new action of the magnet on electric currents. Am. J. Math. 2, 287 (1879)

    Article  MathSciNet  MATH  Google Scholar 

  167. Pugh, E.M., Rostoker, N.: Hall effect in ferromagnetic materials. Rev. Mod. Phys. 25, 151 (1953)

    Article  ADS  Google Scholar 

  168. Ziese, M., Vrejoiu, I.: Anomalous and planar Hall effect of orthorhombic and tetragonal SrRuO3 layers. Phys. Rev. B 84, 104413 (2011)

    Article  ADS  Google Scholar 

  169. Matsuno, J., Ogawa, N., Yasuda, K., Kagawa, F., Koshibae, W., Nagaosa, N., Tokura, Y., Kawasaki, M.: Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer. Sci. Adv. 2, e1600304 (2016)

    Article  ADS  Google Scholar 

  170. Hurd, C.M.: Pressing electricity. In: Chien, C.L., Westgate, C.R. (eds.) The Hall Effect and Its Applications, pp. 1–54. Plenum Press, New York (1980)

    Google Scholar 

  171. Smit, J.: The spontaneous Hall effect in ferromagnetics I. Physica 21, 877 (1955)

    Article  ADS  Google Scholar 

  172. Smit, J.: The spontaneous Hall effect in ferromagnetics II. Physica 24, 39 (1958)

    Article  ADS  Google Scholar 

  173. Berger, L.: Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B 2, 4559 (1970)

    Article  ADS  Google Scholar 

  174. Lyanda-Geller, Y., Chun, S.H., Salamon, M.B., Goldbart, P.M., Han, P.D., Tomioka, Y., Asamitsu, A., Tokura, Y.: Charge transport in manganites: hopping conduction, the anomalous hall effect, and universal scaling. Phys. Rev. B 63, 184426 (2001)

    Article  ADS  Google Scholar 

  175. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010)

    Article  ADS  Google Scholar 

  176. Fang, Z., Nagaosa, N., Takahashi, K.S., Asamitsu, A., Mathieu, R., Ogasawara, T., Yamada, H., Kawasaki, M., Tokura, Y., Terakura, K.: The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92 (2003)

    Article  ADS  Google Scholar 

  177. Chen, Y., Bergman, D.L., Burkov, A.A.: Weyl fermions and the anomalous Hall effect in metallic ferromagnets. Phys. Rev. B 88, 125110 (2013)

    Article  ADS  Google Scholar 

  178. Neubauer, A., Pfleiderer, C., Binz, B., Rosch, A., Ritz, R., Niklowitz, P.G., Böni, P.: Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009)

    Article  ADS  Google Scholar 

  179. Li, Y., Xiong, P., von Molnár, S., Wirth, S., Ohno, Y., Ohno, H.: Hall magnetometry on a single iron nanoparticle. Appl. Phys. Lett. 80, 4644 (2002)

    Article  ADS  Google Scholar 

  180. Zeldov, E., Majer, D., Konczykowski, M., Geshkenbein, V.B., Vinokur, V.M., Shtrikman, H.: Thermodynamic observation of first-order vortex-lattice melting transition in Bi2Sr2CaCu2O8. Nature 375, 373 (1995)

    Article  ADS  Google Scholar 

  181. Zhang, S.: Spin Hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393 (2000)

    Article  ADS  Google Scholar 

  182. Dyakonov, M.I., Perel, V.I.: Current-induced spin orientation of electrons in semiconductors. Phys. Lett. 35A, 459 (1971)

    Article  ADS  Google Scholar 

  183. Dyakonov, M.I., Khaetskii, A.V.: Spin Hall effect. In: Dyakonov, M.I. (ed.) Spin Physics in Semiconductors, pp. 211–243. Springer, Berlin/Heidelberg (2008)

    Chapter  Google Scholar 

  184. Hirsch, J.E.: Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999)

    Article  ADS  Google Scholar 

  185. Sinova, J., Valenzuela, S.O., Wunderlich, J., Back, C.H., Jungwirth, T.: Spin Hall effects. Rev. Mod. Phys. 87, 1213 (2015)

    Article  ADS  Google Scholar 

  186. Kato, Y.K., Myers, R.C., Gossard, A.C., Awschalom, D.D.: Observation of the spin Hall effect in semiconductors. Science 306, 1910 (2004)

    Article  ADS  Google Scholar 

  187. Kimura, T., Otani, Y., Sato, T., Takahashi, S., Maekawa, S.: Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007)

    Article  ADS  Google Scholar 

  188. Valenzuela, S.O., Tinkham, M.: Direct electronic measurement of the spin Hall effect. Nature 442, 176 (2006)

    Article  ADS  Google Scholar 

  189. Saitoh, E., Ueda, M., Miyajima, H., Tatara, G.: Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006)

    Article  ADS  Google Scholar 

  190. Miao, B.F., Huang, S.Y., Qu, D., Chien, C.L.: Inverse spin Hall effect in a ferromagnetic metal. Phys. Rev. Lett. 111, 066602 (2013)

    Article  ADS  Google Scholar 

  191. Bernevig, B.A., Zhang, S.-C.: Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006)

    Article  ADS  Google Scholar 

  192. König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L.W., Qi, X.-L., Zhang, S.-C.: Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  193. Hasan, M.Z., Kane, C.L.: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  194. Beach, R.S., Berkowitz, A.E.: Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Appl. Phys. Lett. 64, 3652 (1994)

    Article  ADS  Google Scholar 

  195. Panina, L.V., Mohri, K.: Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 65, 1189 (1994)

    Article  ADS  Google Scholar 

  196. Phan, M.-H., Peng, H.-X.: Giant magnetoimpedance materials: fundamentals and applications. Progress Mater. Sci. 53, 323 (2008)

    Article  Google Scholar 

  197. Panina, L.V., Mohn, K., Uchyama, T., Noda, M.: Giant magneto-impedance in Co-rich amorphous wires and films. IEEE Trans. Magn. 31, 1249 (1995)

    Article  ADS  Google Scholar 

  198. Yoon, S.S., Kim, C.G.: Separation of reversible domain-wall motion and magnetization rotation components in susceptibility spectra of amorphous magnetic materials. Appl. Phys. Lett. 78, 3280 (2001)

    Article  ADS  Google Scholar 

  199. Chen, D.-X., Muñoz, J.L.: Ac impedance and circular permeability of slab and cylinder. IEEE Trans. Magn. 35, 1906 (1999)

    Article  ADS  Google Scholar 

  200. Yelon, A., Ménard, D., Britel, M., iureanu, P.: Calculations of giant magnetoimpedance and of ferromagnetic resonance response are rigorously equivalent. Appl. Phys. Lett. 69, 3084 (1996)

    Google Scholar 

  201. Montgomery, H.C.: Method for measuring electrical resistivity of anisotropic materials. J. Appl. Phys. 42, 2971 (1971)

    Article  ADS  Google Scholar 

  202. van der Pauw, L.J.: A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech. Rev. 20, 220 (1959)

    Google Scholar 

  203. Büttiker, M.: Symmetry of electrical conduction. IBM J. Res. Develop. 32, 317 (1988)

    Article  Google Scholar 

  204. Johnson, M.: Spin accumulation in gold films. Phys. Rev. Lett. 70, 2142 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ziese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ziese, M. (2021). Magnetotransport. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_9

Download citation

Publish with us

Policies and ethics