Skip to main content

Magnetic Memory and Logic

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

Since the institution of the International Olympic Committee in 1894, the three Latin words “Citius, Altius, and Fortius,” which mean “faster, higher, and stronger,” are the motto of the Olympic Games. Similarly, “faster, denser, and longer” is the motto that could be adopted by the scientific community behind the development of the magnetic memory and logic devices for information technology. The storage density of the magnetic hard drives used as primary memory has seen more than a thousandfold increase since the first application of giant magnetoresistance into the read head around 1997. The integration of memory and logic in the same device, together with progressive miniaturization, is expected to break the energy and time constraints of the classic Neumann architecture. This chapter of magnetic memory and logic focuses on the discussion of using magnetic materials, magnetoresistance, and spin current for information storage and logic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chappert, C., Fert, A., Nguyen Van Dau, F.: The emergence of spin electronics in data storage. Nat. Mater. 6, 813 (2007)

    Article  ADS  Google Scholar 

  2. Parkin, S., Yang, S.-H.: Memory on the racetrack. Nat. Nanotechnol. 10, 195 (2015)

    Article  ADS  Google Scholar 

  3. Moser, A., Takano, K., Margulies, D.T., Albrecht, M., Sonobe, Y., Ikeda, Y., Sun, S., Fullerton, E.E.: Magnetic recording: advancing into the future. J. Phys. D Appl. Phys. 35, R157 (2002)

    Article  ADS  Google Scholar 

  4. Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  5. Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B. 39, 4828 (1989)

    Article  ADS  Google Scholar 

  6. Fert, A.: Nobel lecture: origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517 (2008)

    Article  ADS  Google Scholar 

  7. Parkin, S.S.P., More, N., Roche, K.P.: Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64, 2304 (1990)

    Article  ADS  Google Scholar 

  8. Bruno, P., Chappert, C.: Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Phys. Rev. Lett. 67, 1602 (1991)

    Article  ADS  Google Scholar 

  9. Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A. 54, 225 (1975)

    Article  ADS  Google Scholar 

  10. Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junction. Phys. Rev. Lett. 74, 3273 (1995)

    Article  ADS  Google Scholar 

  11. Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., Yang, S.-H.: Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862 (2004)

    Article  ADS  Google Scholar 

  12. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868 (2004)

    Article  ADS  Google Scholar 

  13. Butler, W.H., Zhang, X.G., Schulthess, T.C., MacLaren, J.M.: Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B. 63, 054416 (2001)

    Article  ADS  Google Scholar 

  14. Parkin, S.S.P., Roche, K.P., Samant, M.G., Rice, P.M., Beyers, R.B., Scheuerlein, R.E., O’Sullivan, E.J., Brown, S.L., Bucchigano, J., Abraham, D.W., Lu, Y., Rooks, M., Trouilloud, P.L., Wanner, R.A., Gallagher, W.J.: Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). J. Appl. Phys. 85, 5828 (1999)

    Article  ADS  Google Scholar 

  15. Kent, A.D., Worledge, D.C.: A new spin on magnetic memories. Nat. Nanotechnol. 10, 187 (2015)

    Article  ADS  Google Scholar 

  16. Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1 (1996)

    Article  ADS  Google Scholar 

  17. Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B. 54, 9353 (1996)

    Article  ADS  Google Scholar 

  18. Kawahara, T., Takemura, R., Miura, K., Hayakawa, J., Ikeda, S., Lee, Y.M., Sasaki, R., Goto, Y., Ito, K., Meguro, T., Matsukura, F., Takahashi, H., Matsuoka, H., Ohno, H.: 2 Mb SPRAM (SPin-transfer torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read. IEEE J. Solid State Circuits. 43, 109 (2008)

    Article  ADS  Google Scholar 

  19. Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H.D., Endo, M., Kanai, S., Hayakawa, J., Matsukura, F., Ohno, H.: A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721 (2010)

    Article  ADS  Google Scholar 

  20. Miron, I.M., Garello, K., Gaudin, G., Zermatten, P.-J., Costache, M.V., Auffret, S., Bandiera, S., Rodmacq, B., Schuhl, A., Gambardella, P.: Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature. 476, 189 (2011)

    Article  ADS  Google Scholar 

  21. Liu, L., Pai, C.-F., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin-torque switching with the giant spin Hall effect of tantalum. Science. 336, 555 (2012)

    Article  ADS  Google Scholar 

  22. Brataas, A., Hals, K.M.D.: Spin-orbit torques in action. Nat. Nanotechnol. 9, 86 (2014)

    Article  ADS  Google Scholar 

  23. Han, J., Richardella, A., Siddiqui, S.A., Finley, J., Samarth, N., Liu, L.: Room-temperature spin-orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017)

    Article  ADS  Google Scholar 

  24. Dyakonov, M.I., Perel, V.I.: Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov. Phys. Solid State. 13, 3023 (1972)

    Google Scholar 

  25. Zhang, S.: Spin Hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393 (2000)

    Article  ADS  Google Scholar 

  26. Hirsch, J.E.: Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999)

    Article  ADS  Google Scholar 

  27. Sinova, J., Culcer, D., Niu, Q., Sinitsyn, N.A., Jungwirth, T., MacDonald, A.H.: Universal intrinsic spin-Hall effect. Phys. Rev. Lett. 92, 126603 (2004)

    Article  ADS  Google Scholar 

  28. Edelstein, V.M.: Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233 (1990)

    Article  ADS  Google Scholar 

  29. Manchon, A., Koo, H.C., Nitta, J., Frolov, S.M., Duine, R.A.: New perspectives for Rashba spin-orbit coupling. Nat. Mater. 14, 871 (2015)

    Article  ADS  Google Scholar 

  30. Soumyanarayanan, A., Reyren, N., Fert, A., Panagopoulos, C.: Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature. 539, 509 (2016)

    Article  Google Scholar 

  31. Han, W., Otani, Y., Maekawa, S.: Quantum materials for spin and charge conversion. npj Quantum Mater. 3, 27 (2018)

    Article  ADS  Google Scholar 

  32. Mellnik, A.R., Lee, J.S., Richardella, A., Grab, J.L., Mintun, P.J., Fischer, M.H., Vaezi, A., Manchon, A., Kim, E.A., Samarth, N., Ralph, D.C.: Spin-transfer torque generated by a topological insulator. Nature. 511, 449 (2014)

    Article  ADS  Google Scholar 

  33. Sánchez, J.C.R., Vila, L., Desfonds, G., Gambarelli, S., Attané, J.P., De Teresa, J.M., Magén, C., Fert, A.: Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 3944 (2013)

    Article  Google Scholar 

  34. Lesne, E., Fu, Y., Oyarzun, S., Rojas-Sanchez, J.C., Vaz, D.C., Naganuma, H., Sicoli, G., Attane, J.P., Jamet, M., Jacquet, E., George, J.M., Barthelemy, A., Jaffres, H., Fert, A., Bibes, M., Vila, L.: Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261 (2016)

    Article  ADS  Google Scholar 

  35. Song, Q., Zhang, H., Su, T., Yuan, W., Chen, Y., Xing, W., Shi, J., Sun, J., Han, W.: Observation of inverse Edelstein effect in Rashba-split 2DEG between SrTiO3 and LaAlO3 at room temperature. Sci. Adv. 3, e1602312 (2017)

    Article  ADS  Google Scholar 

  36. MacNeill, D., Stiehl, G.M., Guimaraes, M.H.D., Buhrman, R.A., Park, J., Ralph, D.C.: Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300 (2016)

    Article  Google Scholar 

  37. Wakamura, T., Akaike, H., Omori, Y., Niimi, Y., Takahashi, S., Fujimaki, A., Maekawa, S., Otani, Y.: Quasiparticle-mediated spin Hall effect in a superconductor. Nat. Mater. 14, 675 (2015)

    Article  ADS  Google Scholar 

  38. Zhang, W., Han, W., Yang, S.-H., Sun, Y., Zhang, Y., Yan, B., Parkin, S.S.P.: Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016)

    Google Scholar 

  39. Parkin, S.S.P., Hyayshi, M., Thomas, L.: Magnetic domain-wall racetrack memory. Science. 320, 190 (2008)

    Google Scholar 

  40. Yang, S.-H., Ryu, K.-S., Parkin, S.: Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221 (2015)

    Google Scholar 

  41. Kim, K.-J., Kim, S.K., Hirata, Y., Oh, S.-H., Tono, T., Kim, D.-H., Okuno, T., Ham, W.S., Kim, S., Go, G., Tserkovnyak, Y., Tsukamoto, A., Moriyama, T., Lee, K.-J., Ono, T.: Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187 (2017)

    Article  ADS  Google Scholar 

  42. Ryu, K.-S., Thomas, L., Yang, S.-H., Parkin, S.S.P.: Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527 (2013)

    Article  ADS  Google Scholar 

  43. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E., Beach, G.S.D.: Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611 (2013)

    Article  ADS  Google Scholar 

  44. Skyrme, T.H.R.: A unified field theory of mesons and baryons. Nucl. Phys. 31, 556 (1962)

    Article  MathSciNet  Google Scholar 

  45. Fert, A., Cros, V., Sampaio, J.: Skyrmions on the track. Nat. Nanotechnol. 8, 152 (2013)

    Article  ADS  Google Scholar 

  46. Moreau-Luchaire, C., Moutafis, C., Reyren, N., Sampaio, J., Vaz, C.A.F., Van Horne, N., Bouzehouane, K., Garcia, K., Deranlot, C., Warnicke, P., Wohlhüter, P., George, J.M., Weigand, M., Raabe, J., Cros, V., Fert, A.: Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444 (2016)

    Article  ADS  Google Scholar 

  47. Jiang, W., Upadhyaya, P., Zhang, W., Yu, G., Jungfleisch, M.B., Fradin, F.Y., Pearson, J.E., Tserkovnyak, Y., Wang, K.L., Heinonen, O., te Velthuis, S.G.E., Hoffmann, A.: Blowing magnetic skyrmion bubbles. Science. 349, 283 (2015)

    Article  ADS  Google Scholar 

  48. Maccariello, D., Legrand, W., Reyren, N., Garcia, K., Bouzehouane, K., Collin, S., Cros, V., Fert, A.: Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat. Nanotechnol. 13, 233 (2018)

    Article  ADS  Google Scholar 

  49. Woo, S., Litzius, K., Kruger, B., Im, M.-Y., Caretta, L., Richter, K., Mann, M., Krone, A., Reeve, R.M., Weigand, M., Agrawal, P., Lemesh, I., Mawass, M.-A., Fischer, P., Klaui, M., Beach, G.S.D.: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501 (2016)

    Article  ADS  Google Scholar 

  50. Baltz, V., Manchon, A., Tsoi, M., Moriyama, T., Ono, T., Tserkovnyak, Y.: Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  51. Železný, J., Wadley, P., Olejník, K., Hoffmann, A., Ohno, H.: Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220 (2018)

    Article  Google Scholar 

  52. Wadley, P., Howells, B., Železný, J., Andrews, C., Hills, V., Campion, R.P., Novák, V., Olejník, K., Maccherozzi, F., Dhesi, S.S., Martin, S.Y., Wagner, T., Wunderlich, J., Freimuth, F., Mokrousov, Y., Kuneš, J., Chauhan, J.S., Grzybowski, M.J., Rushforth, A.W., Edmonds, K.W., Gallagher, B.L., Jungwirth, T.: Electrical switching of an antiferromagnet. Science. 351, 587 (2016)

    Article  ADS  Google Scholar 

  53. Marti, X., Fina, I., Frontera, C., Liu, J., Wadley, P., He, Q., Paull, R.J., Clarkson, J.D., Kudrnovský, J., Turek, I., Kuneš, J., Yi, D., Chu, J.H., Nelson, C.T., You, L., Arenholz, E., Salahuddin, S., Fontcuberta, J., Jungwirth, T., Ramesh, R.: Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367 (2014)

    Article  ADS  Google Scholar 

  54. Grzybowski, M.J., Wadley, P., Edmonds, K.W., Beardsley, R., Hills, V., Campion, R.P., Gallagher, B.L., Chauhan, J.S., Novak, V., Jungwirth, T., Maccherozzi, F., Dhesi, S.S.: Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017)

    Article  ADS  Google Scholar 

  55. Bodnar, S.Y., Šmejkal, L., Turek, I., Jungwirth, T., Gomonay, O., Sinova, J., Sapozhnik, A.A., Elmers, H.J., Kläui, M., Jourdan, M.: Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018)

    Article  ADS  Google Scholar 

  56. Chen, X.Z., Zarzuela, R., Zhang, J., Song, C., Zhou, X.F., Shi, G.Y., Li, F., Zhou, H.A., Jiang, W.J., Pan, F., Tserkovnyak, Y.: Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018)

    Article  ADS  Google Scholar 

  57. Gong, C., Zhang, X.: Two-dimensional magnetic crystals and emergent heterostructure devices. Science. 363, eaav4450 (2019)

    Article  Google Scholar 

  58. Burch, K.S., Mandrus, D., Park, J.-G.: Magnetism in two-dimensional van der Waals materials. Nature. 563, 47 (2018)

    Article  ADS  Google Scholar 

  59. Mak, K.F., Shan, J., Ralph, D.C.: Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646 (2019)

    Article  Google Scholar 

  60. Gibertini, M., Koperski, M., Morpurgo, A.F., Novoselov, K.S.: Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408 (2019)

    Article  ADS  Google Scholar 

  61. Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 546, 270 (2017)

    Article  ADS  Google Scholar 

  62. Gong, C., Li, L., Li, Z., Ji, H., Stern, A., Xia, Y., Cao, T., Bao, W., Wang, C., Wang, Y., Qiu, Z.Q., Cava, R.J., Louie, S.G., Xia, J., Zhang, X.: Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature. 546, 265 (2017)

    Article  ADS  Google Scholar 

  63. Fei, Z., Huang, B., Malinowski, P., Wang, W., Song, T., Sanchez, J., Yao, W., Xiao, D., Zhu, X., May, A.F., Wu, W., Cobden, D.H., Chu, J.-H., Xu, X.: Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778 (2018)

    Google Scholar 

  64. Xing, W., Chen, Y., Odenthal, P.M., Zhang, X., Yuan, W., Su, T., ong, Q., Wang, T., Zhong, J., Jia, S., Xie, X.C., Li, Y., Han, W.: Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material. 2D Mater. 4, 024009 (2017)

    Article  Google Scholar 

  65. Deng, Y., Yu, Y., Song, Y., Zhang, J., Wang, N.Z., Wu, Y.Z., Zhu, J., Wang, J., Chen, X.H., Zhang, Y.: Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature. 563, 94 (2018)

    Google Scholar 

  66. Klein, D.R., MacNeill, D., Lado, J.L., Soriano, D., Navarro-Moratalla, E., Watanabe, K., Taniguchi, T., Manni, S., Canfield, P., Fernández-Rossier, J., Jarillo-Herrero, P.: Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science. 360, 1218 (2018)

    Article  ADS  Google Scholar 

  67. Song, T., Cai, X., Tu, M.W.-Y., Zhang, X., Huang, B., Wilson, N.P., Seyler, K.L., Zhu, L., Taniguchi, T., Watanabe, K., McGuire, M.A., Cobden, D.H., Xiao, D., Yao, W., Xu, X.: Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science. 360, 1214 (2018)

    Article  ADS  Google Scholar 

  68. Wang, Z., Sapkota, D., Taniguchi, T., Watanabe, K., Mandrus, D., Morpurgo, A.F.: Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18, 4303 (2018)

    Article  ADS  Google Scholar 

  69. Cowburn, R.P., Welland, M.E.: Room temperature magnetic quantum cellular automata. Science. 287, 1466 (2000)

    Article  ADS  Google Scholar 

  70. Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G.H., Porod, W.: Majority logic gate for magnetic quantum-dot cellular automata. Science. 311, 205 (2006)

    Article  ADS  Google Scholar 

  71. Allwood, D.A., Xiong, G., Faulkner, C.C., Atkinson, D., Petit, D., Cowburn, R.P.: Magnetic domain-wall logic. Science. 309, 1688 (2005)

    Article  ADS  Google Scholar 

  72. Matsunaga, S., Hayakawa, J., Ikeda, S., Miura, K., Hasegawa, H., Endoh, T., Ohno, H., Hanyu, T.: Fabrication of a nonvolatile full adder based on logic-in-memory architecture using magnetic tunnel junctions. Appl. Phys. Express. 1, 091301 (2008)

    Article  ADS  Google Scholar 

  73. Wang, J., Meng, H., Wang, J.-P.: Programmable spintronics logic device based on a magnetic tunnel junction element. J. Appl. Phys. 97, 10D509 (2005)

    Article  Google Scholar 

  74. Behin-Aein, B., Datta, D., Salahuddin, S., Datta, S.: Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5, 266 (2010)

    Article  ADS  Google Scholar 

  75. Johnson, M., Silsbee, R.H.: Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790 (1985)

    Article  ADS  Google Scholar 

  76. Jedema, F.J., Filip, A.T., van Wees, B.J.: Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature. 410, 345 (2001)

    Article  ADS  Google Scholar 

  77. Kimura, T., Otani, Y.: Large spin accumulation in a permalloy-silver lateral spin valve. Phys. Rev. Lett. 99, 196604 (2007)

    Article  ADS  Google Scholar 

  78. Lou, X., Adelmann, C., Crooker, S.A., Garlid, E.S., Zhang, J., Reddy, K.S.M., Flexner, S.D., Palmstrom, C.J., Crowell, P.A.: Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nat. Phys. 3, 197 (2007)

    Article  Google Scholar 

  79. Appelbaum, I., Huang, B., Monsma, D.J.: Electronic measurement and control of spin transport in silicon. Nature. 447, 295 (2007)

    Article  ADS  Google Scholar 

  80. Zhou, Y., Han, W., Chang, L.-T., Xiu, F., Wang, M., Oehme, M., Fischer, I.A., Schulze, J., Kawakami, R.K., Wang, K.L.: Electrical spin injection and transport in germanium. Phys. Rev. B. 84, 125323 (2011)

    Article  ADS  Google Scholar 

  81. Yang, T., Kimura, T., Otani, Y.: Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching. Nat. Phys. 4, 851 (2008)

    Article  Google Scholar 

  82. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H.T., van Wees, B.J.: Electronic spin transport and spin precession in single graphene layers at room temperature. Nature. 448, 571 (2007)

    Article  ADS  Google Scholar 

  83. Han, W., Pi, K., McCreary, K.M., Li, Y., Wong, J.J.I., Swartz, A.G., Kawakami, R.K.: Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105, 167202 (2010)

    Article  ADS  Google Scholar 

  84. Han, W., Kawakami, R.K., Gmitra, M., Fabian, J.: Graphene spintronics. Nat. Nanotechnol. 9, 794 (2014)

    Article  ADS  Google Scholar 

  85. Roche, S., Åkerman, J., Beschoten, B., Charlier, J.-C., Chshiev, M., Dash, S.P., Dlubak, B., Fabian, J., Fert, A., Guimarães, M., Guinea, F., Grigorieva, I., Schönenberger, C., Seneor, P., Stampfer, C., Valenzuela, S.O., Waintal, X., van Wees, B.: Graphene spintronics: the European Flagship perspective. 2D Mater. 2, 030202 (2015)

    Article  Google Scholar 

  86. Dery, H., Wu, H., Ciftcioglu, B., Huang, M., Song, Y., Kawakami, R., Shi, J., Krivorotov, I., Zutic, I., Sham, L.J.: Nanospintronics based on magnetologic gates. IEEE Trans. Electron Devices. 59, 259 (2012)

    Article  ADS  Google Scholar 

  87. Wen, H., Dery, H., Amamou, W., Zhu, T., Lin, Z., Shi, J., Žutić, I., Krivorotov, I., Sham, L.J., Kawakami, R.K.: Experimental demonstration of XOR operation in graphene magnetologic gates at room temperature. Phys. Rev. Appl. 5, 044003 (2016)

    Article  ADS  Google Scholar 

  88. Manipatruni, S., Nikonov, D.E., Lin, C.-C., Gosavi, T.A., Liu, H., Prasad, B., Huang, Y.-L., Bonturim, E., Ramesh, R., Young, I.A.: Scalable energy-efficient magnetoelectric spin–orbit logic. Nature. 565, 35 (2019)

    Article  ADS  Google Scholar 

  89. Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science. 309, 391 (2005)

    Article  Google Scholar 

  90. Sinova, J., Valenzuela, S.O., Wunderlich, J., Back, C.H., Jungwirth, T.: Spin Hall effects. Rev. Mod. Phys. 87, 1213 (2015)

    Article  ADS  Google Scholar 

  91. Manipatruni, S., Nikonov, D.E., Young, I.A.: Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338 (2018)

    Article  Google Scholar 

  92. Chumak, A.V., Vasyuchka, V.I., Serga, A.A., Hillebrands, B.: Magnon spintronics. Nat. Phys. 11, 453 (2015)

    Article  Google Scholar 

  93. Chumak, A.V., Serga, A.A., Jungfleisch, M.B., Neb, R., Bozhko, D.A., Tiberkevich, V.S., Hillebrands, B.: Direct detection of magnon spin transport by the inverse spin Hall effect. Appl. Phys. Lett. 100, 082405 (2012)

    Article  ADS  Google Scholar 

  94. Schneider, T., Serga, A.A., Leven, B., Hillebrands, B., Stamps, R.L., Kostylev, M.P.: Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008)

    Article  ADS  Google Scholar 

  95. Chumak, A.V., Serga, A.A., Hillebrands, B.: Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (2014)

    Article  ADS  Google Scholar 

  96. Cheng, R., Daniels, M.W., Zhu, J.-G., Xiao, D.: Antiferromagnetic spin wave field-effect transistor. Sci. Rep. 6, 24223 (2016)

    Article  ADS  Google Scholar 

  97. Yu, W., Lan, J., Xiao, J.: Magnetic logic gate based on polarized spin waves. Phys. Rev. Appl. 13, 024055 (2020)

    Article  ADS  Google Scholar 

  98. Keffer, F., Kittel, C.: Theory of antiferromagnetic resonance. Phys. Rev. 85, 329 (1952)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The author acknowledges the funding support of the National Basic Research Programs of China (Grants 2015CB921104 and 2019YFA0308401), National Natural Science Foundation of China (NSFC Grants 11574006 and 11974025), and Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB28000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Han, W. (2021). Magnetic Memory and Logic. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_33

Download citation

Publish with us

Policies and ethics