Skip to main content

Magnetic Imaging and Microscopy

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

The magnetic domain configuration of a system reveals a wealth of information about the fundamental magnetic properties of that system and can be a critical factor in the operation of magnetic devices. Not only are the details of the domain structure strongly governed by materials parameters, but in thin-film and mesoscopic elements, the geometry has an often pivotal effect, providing a convenient handle to tailor desired domain states. Furthermore, a full understanding of a system requires, in addition, investigation of the dynamic evolution of the spin state, which is of particular importance for applications relying on, e.g., the switching of magnetic elements. In this chapter, we review some of the main modern techniques for magnetic imaging, highlighting their respective advantages and limitations. The methods for imaging domain configurations and spin structures cover various spatial and temporal resolution scales and encompass those based on electron and x-ray microscopy as well as scanning probe techniques. Furthermore, away from the discipline of condensed-matter physics, magnetic effects are instrumental in a number of techniques for medical imaging, some key examples of which we also present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hubert, A., Rudolf, S.: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, Berlin (2011)

    Google Scholar 

  2. Cowburn, R.P.: Property variation with shape in magnetic nanoelements. J. Phys. D: Appl. Phys. 33, R1–R16 (1999)

    Article  Google Scholar 

  3. Parkin, S.S.P., Hayashi, M., Thomas, L.: Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008)

    Article  ADS  Google Scholar 

  4. Hrkac, G., Dean, J., Allwood, D.A.: Nanowire spintronics for storage class memories and logic. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 369(1948), 3214–3228 (2011)

    Article  ADS  Google Scholar 

  5. Diegel, M., Glathe, S., Mattheis, R., Scherzinger, M., Halder, E.: A new four bit magnetic domain wall based multiturn counter. IEEE Trans. Magn. 45(10), 3792–3795 (2009)

    Article  ADS  Google Scholar 

  6. Lee, J.-Y., Lee, K.-S., Choi, S., Guslienko, K.Y., Kim, S.-K.: Dynamic transformations of the internal structure of a moving domain wall in magnetic nanostripes. Phys. Rev. B 76, 184408 (2007)

    Article  ADS  Google Scholar 

  7. Boulle, O., Malinowski, G., Kläui, M.: Current-induced domain wall motion in nanoscale ferromagnetic elements. Mater. Sci. Eng. R: Rep. 72(9), 159–187 (2011)

    Article  Google Scholar 

  8. Bitter, F.: Experiments on the nature of ferromagnetism. Phys. Rev. 41, 507–515 (1932)

    Article  ADS  Google Scholar 

  9. Hopster, H., Oepen, H.P.: Magnetic Microscopy of Nanostructures. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  10. Petford-Long, A.K.: Magnetic imaging. In: Ziese, M., Thornton, M.J. (eds.) Spin Electronics, p. 316. Springer, Berlin/Heidelberg (2001)

    Google Scholar 

  11. Dahlberg, E.D., Proksch, R.: Magnetic microscopies: the new additions. J. Magn. Magn. Mater. 200(1), 720–728 (1999)

    Article  ADS  Google Scholar 

  12. Cheong, S.-W., Fiebig, M., Wu, W., Chapon, L., Kiryukhin, V.: Seeing is believing: visualization of antiferromagnetic domains. npj Quantum Mater. 5, 3 (2020)

    Google Scholar 

  13. McCord, J.: Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D: Appl. Phy. 48, 333001 (2015)

    Article  Google Scholar 

  14. Soldatov, I.V., Schäfer, R.: Advances in quantitative Kerr microscopy. Phys. Rev. B 95, 014426 (2017)

    Article  ADS  Google Scholar 

  15. Soldatov, I.V., Schäfer, R.: Selective sensitivity in Kerr microscopy. Rev. Sci. Instrum. 88(7), 073701 (2017)

    Article  ADS  Google Scholar 

  16. Steierl, G., Liu, G., Iorgov, D., Kirschner, J.: Surface domain imaging in external magnetic fields. Rev. Sci. Instrum. 73(12), 4264–4269 (2002)

    Article  ADS  Google Scholar 

  17. Amelinckx, S.: Electron Microscopy: Principles and Fundamentals. VCH, Weinheim (1997)

    Book  Google Scholar 

  18. Helmut, K., Parkin, S.S.P.: Handbook of Magnetism and Advanced Magnetic Materials, vol. 3. Wiley, Chichester (2007)

    Google Scholar 

  19. Hale, M.E., Fuller, H.W., Rubinstein, H.: Magnetic domain observations by electron microscopy. J. Appl. Phys. 30(5), 789–791 (1959)

    Article  ADS  Google Scholar 

  20. Chapman, J., Scheinfein, M.: Transmission electron microscopies of magnetic microstructures. J. Magn. Magn. Mater. 200(1), 729–740 (1999)

    Article  ADS  Google Scholar 

  21. Zweck, J., Schneider, M., Sessner, M., Uhlig, T., Heumann, M.: Lorentz electron microscopic observation of micromagnetic configurations in nanostructured materials. In: Kramer, B. (ed.) Advances in Solid State Physics, vol. 41. Springer, Berlin/Heidelberg (2001)

    Chapter  Google Scholar 

  22. Volkov, V., Zhu, Y.: Lorentz phase microscopy of magnetic materials. Ultramicroscopy 98(2), 271–281 (2004)

    Article  Google Scholar 

  23. Chapman, J.N.: The investigation of magnetic domain structures in thin foils by electron microscopy. J. Phys. D: Appl. Phys. 17, 623–647 (1984)

    Article  ADS  Google Scholar 

  24. Chapman, J., Morrison, G.: Quantitative determination of magnetisation distributions in domains and domain walls by scanning transmission electron microscopy. J. Magn. Magn. Mater. 35(1), 254–260 (1983)

    Article  ADS  Google Scholar 

  25. Dekkers, N., de Lang, H.: Differential phase contrast in a STEM. Optik 41, 452 (1974)

    Google Scholar 

  26. Krajnak, M., McGrouther, D., Maneuski, D., Shea, V.O., McVitie, S.: Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast. Ultramicroscopy 165, 42–50 (2016)

    Article  Google Scholar 

  27. Mankos, M., Cowley, J.M., Scheinfein, M.R.: Quantitative micromagnetics at high spatial resolution using far-out-of-focus STEM electron holography. Physica Status Solidi (A) 154(2), 469–504 (1996)

    Article  ADS  Google Scholar 

  28. Cowley, J.: Twenty forms of electron holography. Ultramicroscopy 41(4), 335–348 (1992)

    Article  Google Scholar 

  29. Midgley, P.A., Dunin-Borkowski, R.E.: Electron tomography and holography in materials science. Nat. Mater. 8, 271–280 (2009)

    Article  ADS  Google Scholar 

  30. Hawkes, P.W.: Aberration correction past and present. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 367(1903), 3637–3664 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. McVitie, S., McGrouther, D., McFadzean, S., MacLaren, D., O’Shea, K., Benitez, M.: Aberration corrected Lorentz scanning transmission electron microscopy. Ultramicroscopy 152, 57–62 (2015)

    Article  Google Scholar 

  32. Chrobok, G., Hofmann, M.: Electron spin polarization of secondary electrons ejected from magnetized europium oxide. Phys. Lett. A 57(3), 257–258 (1976)

    Article  ADS  Google Scholar 

  33. Jones, G.: Magnetic contrast in the scanning electron microscope: an appraisal of techniques and their applications. J. Magn. Magn. Mater. 8(4), 263–285 (1978)

    Article  ADS  Google Scholar 

  34. Kohashi, T., Konoto, M., Koike, K.: High-resolution spin-polarized scanning electron microscopy (spin SEM). J. Electron Microsc. 59(1), 43–52 (2009)

    Article  Google Scholar 

  35. Scheinfein, M.R., Unguris, J., Kelley, M.H., Pierce, D.T., Celotta, R.J.: Scanning electron microscopy with polarization analysis (SEMPA). Rev. Sci. Instrum. 61(10), 2501–2527 (1990)

    Article  ADS  Google Scholar 

  36. R. Allenspach Spin-polarized scanning electron microscopy. IBM J. Res. Dev. 44(4), 553–570 (2000)

    Article  Google Scholar 

  37. Suga, S., Tusche, C.: Photoelectron spectroscopy in a wide hν region from 6ev to 8kev with full momentum and spin resolution. J. Electron Spectrosc. Relat. Phenom. 200, 119–142 (2015)

    Article  Google Scholar 

  38. Frömter, R., Hankemeier, S., Oepen, H.P., Kirschner, J.: Optimizing a low-energy electron diffraction spin-polarization analyzer for imaging of magnetic surface structures. Rev. Sci. Instrum. 82(3), 033704 (2011)

    Article  ADS  Google Scholar 

  39. Burnett, G.C., Monroe, T.J., Dunning, F.B.: High-efficiency retarding-potential mott polarization analyzer. Rev. Sci. Instrum. 65(6), 1893–1896 (1994)

    Article  ADS  Google Scholar 

  40. Reeve, R.M., Chin, S.-L., Ionescu, A., Barnes, C.H.W.: Modification of the secondary-electron spin polarization in Co/Cu(110) films via gaseous adsorbates. Phys. Rev. B 84, 184431 (2011)

    Article  ADS  Google Scholar 

  41. Lofink, F., Hankemeier, S., Frömter, R., Kirschner, J., Oepen, H.P.: Long-time stability of a low-energy electron diffraction spin polarization analyzer for magnetic imaging. Rev. Sci. Instrum. 83(2), 023708 (2012)

    Article  ADS  Google Scholar 

  42. Abraham, D.L., Hopster, H.: Magnetic probing depth in spin-polarized secondary electron spectroscopy. Phys. Rev. Lett. 58, 1352–1354 (1987)

    Article  ADS  Google Scholar 

  43. Kuhrau, S., Kloodt-Twesten, F., Heyn, C., Oepen, H.P., Frömter, R.: Cap-layer-dependent oxidation of ultrathin cobalt films and its effect on the magnetic contrast in scanning electron microscopy with polarization analysis. Appl. Phys. Lett. 113(17), 172403 (2018)

    Article  ADS  Google Scholar 

  44. VanZandt, T., Browning, R., Landolt, M.: Iron overlayer polarization enhancement technique for spin-polarized electron microscopy. J. Appl. Phys. 69(3), 1564–1568 (1991)

    Article  ADS  Google Scholar 

  45. Reeve, R.M., Mix, C., König, M., Foerster, M., Jakob, G., Kläui, M.: Magnetic domain structure of La0.7Sr0.3MnO3 thin-films probed at variable temperature with scanning electron microscopy with polarization analysis. Appl. Phys. Lett. 102(12), 122407 (2013)

    Google Scholar 

  46. Oepen, H., Benning, M., Ibach, H., Schneider, C., Kirschner, J.: Magnetic domain structure in ultrathin cobalt films. J. Magn. Magn. Mater. 86(2), L137–L142 (1990)

    Article  ADS  Google Scholar 

  47. Konoto, M., Kohashi, T., Koike, K., Arima, T., Kaneko, Y., Kimura, T., Tokura, Y.: Direct imaging of temperature-dependent layered antiferromagnetism of a magnetic oxide. Phys. Rev. Lett. 93, 107201 (2004)

    Article  ADS  Google Scholar 

  48. Frömter, R., Kloodt, F., Rößler, S., Frauen, A., Staeck, P., Cavicchia, D.R., Bocklage, L., Röbisch, V., Quandt, E., Oepen, H.P.: Time-resolved scanning electron microscopy with polarization analysis. Appl. Phys. Lett. 108(14), 142401 (2016)

    Article  ADS  Google Scholar 

  49. Schönke, D., Oelsner, A., Krautscheid, P., Reeve, R.M., Kläui, M.: Development of a scanning electron microscopy with polarization analysis system for magnetic imaging with ns time resolution and phase-sensitive detection. Rev. Sci. Instrum. 89(8), 083703 (2018)

    Article  ADS  Google Scholar 

  50. Schönke, D., Reeve, R.M., Stoll, H., Kläui, M.: Quantification of competing magnetic states and switching pathways in curved nanowires by direct dynamic imaging. ACS Nano 14(10), 13324–13332 (2020)

    Article  Google Scholar 

  51. Krautscheid, P., Reeve, R.M., Lauf, M., Krüger, B., Kläui, M.: Domain wall spin structures in mesoscopic Fe rings probed by high resolution SEMPA. J. Phys. D: Appl. Phys. 49, 425004 (2016)

    Article  Google Scholar 

  52. Koike, K., Kirschner, J.: Primary energy dependence of secondary electron polarization. J. Phys. D: Appl. Phys. 25, 1139–1141 (1992)

    Article  ADS  Google Scholar 

  53. Tersoff, J., Hamann, D.R.: Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983)

    Article  ADS  Google Scholar 

  54. Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985)

    Article  ADS  Google Scholar 

  55. Wiesendanger, R., Güntherodt, H.-J., Güntherodt, G., Gambino, R.J., Ruf, R.: Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys. Rev. Lett. 65, 247–250 (1990)

    Article  ADS  Google Scholar 

  56. Bode, M., Getzlaff, M., Wiesendanger, R.: Spin-polarized vacuum tunneling into the exchange-split surface state of Gd(0001). Phys. Rev. Lett. 81, 4256–4259 (1998)

    Article  ADS  Google Scholar 

  57. Wulfhekel, W., Kirschner, J.: Spin-polarized scanning tunneling microscopy on ferromagnets. Appl. Phys. Lett. 75(13), 1944–1946 (1999)

    Article  ADS  Google Scholar 

  58. Kaiser, U., Schwarz, A., Wiesendanger, R.: Magnetic exchange force microscopy with atomic resolution. Nature 446, 522–525 (2007)

    Article  ADS  Google Scholar 

  59. Shono, T., Hasegawa, T., Fukumura, T., Matsukura, F., Ohno, H.: Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga,Mn)As with a scanning Hall probe microscope. Appl. Phys. Lett. 77(9), 1363–1365 (2000)

    Article  ADS  Google Scholar 

  60. Chang, A.M., Hallen, H.D., Harriott, L., Hess, H.F., Kao, H.L., Kwo, J., Miller, R.E., Wolfe, R., van der Ziel, J., Chang, T.Y.: Scanning Hall probe microscopy. Appl. Phys. Lett. 61(16), 1974–1976 (1992)

    Article  ADS  Google Scholar 

  61. Howells, G., Oral, A., Bending, S., Andrews, S., Squire, P., Rice, P., de Lozanne, A., Bland, J., Kaya, I., Henini, M.: Scanning Hall probe microscopy of ferromagnetic structures. J. Magn. Magn. Mater. 196–197, 917–919 (1999)

    Article  ADS  Google Scholar 

  62. Vu, L.N., Wistrom, M.S., Van Harlingen, D.J.: Imaging of magnetic vortices in superconducting networks and clusters by scanning squid microscopy. Appl. Phys. Lett. 63(12), 1693–1695 (1993)

    Article  ADS  Google Scholar 

  63. Kirtley, J.R., Ketchen, M.B., Stawiasz, K.G., Sun, J.Z., Gallagher, W.J., Blanton, S.H., Wind, S.J.: High-resolution scanning squid microscope. Appl. Phys. Lett. 66(9), 1138–1140 (1995)

    Article  ADS  Google Scholar 

  64. Sidles, J.A., Garbini, J.L., Bruland, K.J., Rugar, D., Züger, O., Hoen, S., Yannoni, C.S.: Magnetic resonance force microscopy. Rev. Mod. Phys. 67, 249–265 (1995)

    Article  ADS  Google Scholar 

  65. Rugar, D., Budakian, R., Mamin, H.J., Chui, B.W.: Single spin detection by magnetic resonance force microscopy. Nature 430(6997), 329–332 (2004)

    Article  ADS  Google Scholar 

  66. Wagenaar, J.J.T., den Haan, A.M.J., de Voogd, J.M., Bossoni, L., de Jong, T.A., de Wit, M., Bastiaans, K.M., Thoen, D.J., Endo, A., Klapwijk, T.M., Zaanen, J., Oosterkamp, T.H.: Probing the nuclear spin-lattice relaxation time at the nanoscale. Phys. Rev. Appl. 6, 014007 (2016)

    Article  ADS  Google Scholar 

  67. Rondin, L., Tetienne, J.-P., Hingant, T., Roch, J.-F., Maletinsky, P., Jacques, V.: Magnetometry with nitrogen-vacancy defects in diamond. Rep. Progress Phys. 77, 056503 (2014)

    Article  ADS  Google Scholar 

  68. Casola, F., van der Sar, T., Yacoby, A.: Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018)

    Article  ADS  Google Scholar 

  69. Chernobrod, B.M., Berman, G.P.: Spin microscope based on optically detected magnetic resonance. J. Appl. Phys. 97(1), 014903 (2005)

    Article  ADS  Google Scholar 

  70. Zhou, T.X., Stöhr, R.J., Yacoby, A.: Scanning diamond NV center probes compatible with conventional AFM technology. Appl. Phys. Lett. 111(16), 163106 (2017)

    Article  ADS  Google Scholar 

  71. Rondin, L., Tetienne, J.-P., Rohart, S., Thiaville, A., Hingant, T., Spinicelli, P., Roch, J.-F., Jacques, V.: Stray-field imaging of magnetic vortices with a single diamond spin. Nat. Commun. 4, 2279 (2013)

    Article  ADS  Google Scholar 

  72. Grinolds, M.S., Hong, S., Maletinsky, P., Luan, L., Lukin, M.D., Walsworth, R.L., Yacoby, A.: Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys. 9, 215–219 (2013)

    Article  Google Scholar 

  73. Tetienne, J.-P., Hingant, T., Kim, J.-V., Diez, L.H., Adam, J.-P., Garcia, K., Roch, J.-F., Rohart, S., Thiaville, A., Ravelosona, D., Jacques, V.: Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science 344(6190), 1366–1369 (2014)

    Article  ADS  Google Scholar 

  74. Dovzhenko, Y., Casola, F., Schlotter, S., Zhou, T.X., Büttner, F., Walsworth, R.L., Beach, G.S.D., Yacoby, A.: Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nat. Commun. 9, 2712 (2018)

    Article  ADS  Google Scholar 

  75. Thiel, L., Wang, Z., Tschudin, M.A., Rohner, D., Gutiérrez-Lezama, I., Ubrig, N., Gibertini, M., Giannini, E., Morpurgo, A.F., Maletinsky, P.: Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364(6444), 973–976 (2019)

    Article  ADS  Google Scholar 

  76. Zhou, T.X., Carmiggelt, J.J., Gächter, L.M., Esterlis, I., Sels, D., Stöhr, R.J., Du, C., Fernandez, D., Rodriguez-Nieva, J.F., Büttner, F., Demler, E., Yacoby, A.: A magnon scattering platform (2020)

    Google Scholar 

  77. Gross, I., Akhtar, W., Garcia, V., Martínez, L.J., Chouaieb, S., Garcia, K., Carrétéro, C., Barthélémy, A., Appel, P., Maletinsky, P., Kim, J.-V., Chauleau, J.Y., Jaouen, N., Viret, M., Bibes, M., Fusil, S., Jacques, V.: Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017)

    Article  ADS  Google Scholar 

  78. Bode, M.: Spin-polarized scanning tunnelling microscopy. Rep. Progress Phys. 66, 523–582 (2003)

    Article  ADS  Google Scholar 

  79. Wiesendanger, R.: Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1550 (2009)

    Article  ADS  Google Scholar 

  80. Suzuki, Y., Nabhan, W., Tanaka, K.: Magnetic domains of cobalt ultrathin films observed with a scanning tunneling microscope using optically pumped GaAs tips. Appl. Phys. Lett. 71(21), 3153–3155 (1997)

    Article  ADS  Google Scholar 

  81. Terada, Y., Yoshida, S., Takeuchi, O., Shigekawa, H.: Real-space imaging of transient carrier dynamics by nanoscale pump–probe microscopy. Nat. Photon. 4, 869–874 (2010)

    Article  ADS  Google Scholar 

  82. Alvarado, S.F., Renaud, P.: Observation of spin-polarized-electron tunneling from a ferromagnet into GaAs. Phys. Rev. Lett. 68, 1387–1390 (1992)

    Article  ADS  Google Scholar 

  83. Mühlenberend, S., Gruyters, M., Berndt, R.: Plasmon-mediated circularly polarized luminescence of GaAs in a scanning tunneling microscope. Appl. Phys. Lett. 107(24), 241110 (2015)

    Article  ADS  Google Scholar 

  84. Schlickum, U., Janke-Gilman, N., Wulfhekel, W., Kirschner, J.: Step-induced frustration of antiferromagnetic order in Mn on Fe(001). Phys. Rev. Lett. 92, 107203 (2004)

    Article  ADS  Google Scholar 

  85. Prokop, J., Kukunin, A., Elmers, H.J.: Magnetic anisotropies and coupling mechanisms in Fe∕Mo(110) nanostripes. Phys. Rev. Lett. 95, 187202 (2005)

    Article  ADS  Google Scholar 

  86. Oka, H., Ignatiev, P.A., Wedekind, S., Rodary, G., Niebergall, L., Stepanyuk, V.S., Sander, D., Kirschner, J.: Spin-dependent quantum interference within a single magnetic nanostructure. Science 327(5967), 843–846 (2010)

    Article  ADS  Google Scholar 

  87. Pratzer, M., Elmers, H.J., Bode, M., Pietzsch, O., Kubetzka, A., Wiesendanger, R.: Atomic-scale magnetic domain walls in quasi-one-dimensional Fe nanostripes. Phys. Rev. Lett. 87, 127201 (2001)

    Article  ADS  Google Scholar 

  88. Prokop, J., Kukunin, A., Elmers, H.J.: Spin-polarized scanning tunneling microscopy and spectroscopy of ultrathin Fe∕Mo(110) films using W∕Au∕Co tips. Phys. Rev. B 73, 014428 (2006)

    Article  ADS  Google Scholar 

  89. Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., Blügel, S.: Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001)

    Article  ADS  Google Scholar 

  90. Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961)

    Article  ADS  Google Scholar 

  91. Schwöbel, J., Fu, Y., Brede, J., Dilullo, A., Hoffmann, G., Klyatskaya, S., Ruben, M., Wiesendanger, R.: Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets. Nat. Commun. 3, 953 (2012)

    Article  ADS  Google Scholar 

  92. Methfessel, T., Steil, S., Baadji, N., Großmann, N., Koffler, K., Sanvito, S., Aeschlimann, M., Cinchetti, M., Elmers, H.J.: Spin scattering and spin-polarized hybrid interface states at a metal-organic interface. Phys. Rev. B 84, 224403 (2011)

    Article  ADS  Google Scholar 

  93. Heinze, S., von Bergmann, K., Menzel, M., Brede, J., Kubetzka, A., Wiesendanger, R., Bihlmayer, G., Blügel, S.: Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011)

    Article  Google Scholar 

  94. Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K., Wiesendanger, R.: Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015)

    Article  ADS  Google Scholar 

  95. Leonov, A.O., Monchesky, T.L., Romming, N., Kubetzka, A., Bogdanov, A.N., Wiesendanger, R.: The properties of isolated chiral skyrmions in thin magnetic films. New J. Phys. 18, 065003 (2016)

    Article  ADS  Google Scholar 

  96. Romming, N., Hanneken, C., Menzel, M., Bickel, J.E., Wolter, B., von Bergmann, K., Kubetzka, A., Wiesendanger, R.: Writing and deleting single magnetic skyrmions. Science 341(6146), 636–639 (2013)

    Article  ADS  Google Scholar 

  97. Martin, Y., Wickramasinghe, H.K.: Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl. Phys. Lett. 50(20), 1455–1457 (1987)

    Article  ADS  Google Scholar 

  98. Schwarz, A., Wiesendanger, R.: Magnetic sensitive force microscopy. Nano Today 3(1), 28–39 (2008)

    Article  Google Scholar 

  99. Hartmann, U.: Magnetic force microscopy. Ann. Rev. Mater. Sci. 29(1), 53–87 (1999)

    Article  ADS  Google Scholar 

  100. Rugar, D., Mamin, H.J., Guethner, P., Lambert, S.E., Stern, J.E., McFadyen, I., Yogi, T.: Magnetic force microscopy: general principles and application to longitudinal recording media. J. Appl. Phys. 68(3), 1169–1183 (1990)

    Article  ADS  Google Scholar 

  101. Hug, H.J., Stiefel, B., van Schendel, P.J.A., Moser, A., Hofer, R., Martin, S., Güntherodt, H.-J., Porthun, S., Abelmann, L., Lodder, J.C., Bochi, G., O’Handley, R.C.: Quantitative magnetic force microscopy on perpendicularly magnetized samples. J. Appl. Phys. 83(11), 5609–5620 (1998)

    Article  ADS  Google Scholar 

  102. Belova, L.M., Hellwig, O., Dobisz, E., Dan Dahlberg, E.: Rapid preparation of electron beam induced deposition Co magnetic force microscopy tips with 10 nm spatial resolution. Rev. Sci. Instrum. 83(9), 093711 (2012)

    Article  ADS  Google Scholar 

  103. Baćani, M., Marioni, M.A., Schwenk, J., Hug, H.J.: How to measure the local dzyaloshinskii-moriya interaction in skyrmion thin-film multilayers. Sci. Rep. 9, 3114 (2019)

    Article  ADS  Google Scholar 

  104. Stoll, H., Noske, M., Weigand, M., Richter, K., Krüger, B., Reeve, R.M., Hänze, M., Adolff, C.F., Stein, F.-U., Meier, G., Kläui, M., Schütz, G.: Imaging spin dynamics on the nanoscale using x-ray microscopy. Front. Phys. 3, 26 (2015)

    Article  Google Scholar 

  105. Fischer, P., Ohldag, H.: X-rays and magnetism. Rep. Progress Phys. 78, 094501 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  106. Boulle, O., Vogel, J., Yang, H., Pizzini, S., de Souza Chaves, D., Locatelli, A., Menteş, T.O., Sala, A., Buda-Prejbeanu, L.D., Klein, O., Belmeguenai, M., Roussigné, Y., Stashkevich, A., Chérif, S.M., Aballe, L., Foerster, M., Chshiev, M., Auffret, S., Miron, I.M., Gaudin, G.: Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 12, 830–830 (2017)

    Article  Google Scholar 

  107. Zeissler, K., Finizio, S., Shahbazi, K., Massey, J., Ma’Mari, F.A., Bracher, D.M., Kleibert, A., Rosamond, M.C., Linfield, E.H., Moore, T.A., Raabe, J., Burnell, G., Marrows, C.H.: Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs. Nat. Nanotechnol. 13, 1161–1166 (2018)

    Article  ADS  Google Scholar 

  108. Woo, S., Song, K.M., Han, H.-S., Jung, M.-S., Im, M.-Y., Lee, K.-S., Song, K.S., Fischer, P., Hong, J.-I., Choi, J.W., Min, B.-C., Koo, H.C., Chang, J.: Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved x-ray microscopy. Nat. Commun. 8, 15573 (2017)

    Article  ADS  Google Scholar 

  109. Büttner, F., Lemesh, I., Schneider, M., Pfau, B., Günther, C.M., Hessing, P., Geilhufe, J., Caretta, L., Engel, D., Krüger, B., Viefhaus, J., Eisebitt, S., Beach, G.S.D.: Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nat. Nanotechnol. 12, 1040–1044 (2017)

    Article  ADS  Google Scholar 

  110. Schütz, G., Wagner, W., Wilhelm, W., Kienle, P., Zeller, R., Frahm, R., Materlik, G.: Absorption of circularly polarized x rays in iron. Phys. Rev. Lett. 58, 737–740 (1987)

    Article  ADS  Google Scholar 

  111. Stöhr, J., Siegmann, H.C.: Magnetism from Fundamentals to Nanoscale Dynamics. Springer, Berlin/Heidelberg (2006)

    Google Scholar 

  112. Fan, T., Grychtol, P., Knut, R., Hernández-García, C., Hickstein, D.D., Zusin, D., Gentry, C., Dollar, F.J., Mancuso, C.A., Hogle, C.W., Kfir, O., Legut, D., Carva, K., Ellis, J.L., Dorney, K.M., Chen, C., Shpyrko, O.G., Fullerton, E.E., Cohen, O., Oppeneer, P.M., Milošević, D.B., Becker, A., Jaroń-Becker, A.A., Popmintchev, T., Murnane, M.M., Kapteyn, H.C.: Bright circularly polarized soft x-ray high harmonics for x-ray magnetic circular dichroism. Proc. Natl. Acad. Sci. 112(46), 14206–14211 (2015)

    Google Scholar 

  113. Willems, F., Smeenk, C.T.L., Zhavoronkov, N., Kornilov, O., Radu, I., Schmidbauer, M., Hanke, M., von Korff Schmising, C., Vrakking, M.J.J., Eisebitt, S.: Probing ultrafast spin dynamics with high-harmonic magnetic circular dichroism spectroscopy. Phys. Rev. B 92, 220405 (2015)

    Article  ADS  Google Scholar 

  114. Kfir, O., Zayko, S., Nolte, C., Sivis, M., Möller, M., Hebler, B., Arekapudi, S.S.P.K., Steil, D., Schäfer, S., Albrecht, M., Cohen, O., Mathias, S., Ropers, C.: Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Sci. Adv. 3(12), eaao4641 (2017)

    Google Scholar 

  115. Fischer, P., Im, M.-Y., Baldasseroni, C., Bordel, C., Hellman, F., Lee, J.-S., Fadley, C.S.: Magnetic imaging with full-field soft x-ray microscopies. J. Electron Spectrosc. Relat. Phenom. 189, 196–205 (2013)

    Article  Google Scholar 

  116. Sakdinawat, A., Attwood, D.: Nanoscale x-ray imaging. Nat. Photon. 4, 840–848 (2010)

    Article  ADS  Google Scholar 

  117. Kilcoyne, A.L.D., Tyliszczak, T., Steele, W.F., Fakra, S., Hitchcock, P., Franck, K., Anderson, E., Harteneck, B., Rightor, E.G., Mitchell, G.E., Hitchcock, A.P., Yang, L., Warwick, T., Ade, H.: Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source. J. Synchrotron Radiat. 10(2), 125–136 (2003)

    Article  Google Scholar 

  118. Shi, X., Fischer, P., Neu, V., Elefant, D., Lee, J.C.T., Shapiro, D.A., Farmand, M., Tyliszczak, T., Shiu, H.-W., Marchesini, S., Roy, S., Kevan, S.D.: Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo5 films. Appl. Phys. Lett. 108(9), 094103 (2016)

    Article  ADS  Google Scholar 

  119. Donnelly, C., Finizio, S., Gliga, S., Holler, M., Hrabec, A., Odstrčil, M., Mayr, S., Scagnoli, V., Heyderman, L.J., Guizar-Sicairos, M., Raabe, J.: Time-resolved imaging of three-dimensional nanoscale magnetization dynamics. Nat. Nanotechnol. 15, 356–360 (2020)

    Article  ADS  Google Scholar 

  120. Li, W., Bykova, I., Zhang, S., Yu, G., Tomasello, R., Carpentieri, M., Liu, Y., Guang, Y., Gräfe, J., Weigand, M., Burn, D.M., van der Laan, G., Hesjedal, T., Yan, Z., Feng, J., Wan, C., Wei, J., Wang, X., Zhang, X., Xu, H., Guo, C., Wei, H., Finocchio, G., Han, X., Schütz, G.: Anatomy of skyrmionic textures in magnetic multilayers. Adv. Mater. 31(14), 1807683 (2019)

    Article  Google Scholar 

  121. Stöhr, J., Wu, Y., Hermsmeier, B.D., Samant, M.G., Harp, G.R., Koranda, S., Dunham, D., Tonner, B.P.: Element-specific magnetic microscopy with circularly polarized x-rays. Science 259(5095), 658–661 (1993)

    Article  ADS  Google Scholar 

  122. Cheng, X.M., Keavney, D.J.: Studies of nanomagnetism using synchrotron-based x-ray photoemission electron microscopy (X-PEEM). Rep. Progress Phys. 75, 026501 (2012)

    Article  ADS  Google Scholar 

  123. Rhensius, J., Heyne, L., Backes, D., Krzyk, S., Heyderman, L.J., Joly, L., Nolting, F., Kläui, M.: Imaging of domain wall inertia in permalloy half-ring nanowires by time-resolved photoemission electron microscopy. Phys. Rev. Lett. 104, 067201 (2010)

    Article  ADS  Google Scholar 

  124. Chapman, H.N., Nugent, K.A.: Coherent lensless x-ray imaging. Nat. Photon. 4, 833–839 (2010)

    Article  ADS  Google Scholar 

  125. Donnelly, C., Guizar-Sicairos, M., Scagnoli, V., Gliga, S., Holler, M., Raabe, J., Heyderman, L.J.: Three-dimensional magnetization structures revealed with x-ray vector nanotomography. Nature 547(7663), 328–331 (2017)

    Article  ADS  Google Scholar 

  126. Thibault, P., Dierolf, M., Menzel, A., Bunk, O., David, C., Pfeiffer, F.: High-resolution scanning x-ray diffraction microscopy. Science 321(5887), 379–382 (2008)

    Article  ADS  Google Scholar 

  127. Thibault, P., Menzel, A.: Reconstructing state mixtures from diffraction measurements. Nature 494, 68–71 (2013)

    Article  ADS  Google Scholar 

  128. Eisebitt, S., Lüning, J., Schlotter, W.F., Lörgen, M., Hellwig, O., Eberhardt, W., Stöhr, J.: Lensless imaging of magnetic nanostructures by x-ray spectro-holography. Nature 432, 885–888 (2004)

    Article  ADS  Google Scholar 

  129. Flewett, S., Günther, C.M., von Korff Schmising, C., Pfau, B., Mohanty, J., Büttner, F., Riemeier, M., Hantschmann, M., Kläui, M., Eisebitt, S.: Holographically aided iterative phase retrieval. Opt. Express 20, 29210–29216 (2012)

    Article  ADS  Google Scholar 

  130. Turner, J.J., Huang, X., Krupin, O., Seu, K.A., Parks, D., Kevan, S., Lima, E., Kisslinger, K., McNulty, I., Gambino, R., Mangin, S., Roy, S., Fischer, P.: X-ray diffraction microscopy of magnetic structures. Phys. Rev. Lett. 107, 033904 (2011)

    Article  ADS  Google Scholar 

  131. Scherz, A., Schlotter, W.F., Chen, K., Rick, R., Stöhr, J., Lüning, J., McNulty, I., Günther, C., Radu, F., Eberhardt, W., Hellwig, O., Eisebitt, S.: Phase imaging of magnetic nanostructures using resonant soft x-ray holography. Phys. Rev. B 76, 214410 (2007)

    Article  ADS  Google Scholar 

  132. Chapman, H.N., Barty, A., Bogan, M.J., Boutet, S., Frank, M., Hau-Riege, S.P., Marchesini, S., Woods, B.W., Bajt, S., Benner, W.H., London, R.A., Plönjes, E., Kuhlmann, M., Treusch, R., Düsterer, S., Tschentscher, T., Schneider, J.R., Spiller, E., Möller, T., Bostedt, C., Hoener, M., Shapiro, D.A., Hodgson, K.O., van der Spoel, D., Burmeister, F., Bergh, M., Caleman, C., Huldt, G., Seibert, M.M., Maia, F.R.N.C., Lee, R.W., Szöke, A., Timneanu, N., Hajdu, J.: Femtosecond diffractive imaging with a soft-x-ray free-electron laser. Nat. Phys. 2, 839–843 (2006)

    Google Scholar 

  133. Flewett, S., Schaffert, S., Mohanty, J., Guehrs, E., Geilhufe, J., Günther, C.M., Pfau, B., Eisebitt, S.: Method for single-shot coherent diffractive imaging of magnetic domains. Phys. Rev. Lett. 108, 223902 (2012)

    Article  ADS  Google Scholar 

  134. Büttner, F., Moutafis, C., Schneider, M., Krüger, B., Günther, C.M., Geilhufe, J., Schmising, C.V.K., Mohanty, J., Pfau, B., Schaffert, S., Bisig, A., Foerster, M., Schulz, T., Vaz, C.A.F., Franken, J.H., Swagten, H.J.M., Kläui, M., Eisebitt, S.: Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225–228 (2015)

    Article  Google Scholar 

  135. Stefan, H.: Photoelectron Spectroscopy: Principles and Applications. Springer, Berlin/London (2011)

    Google Scholar 

  136. Schönhense, G., Medjanik, K., Elmers, H.-J.: Space-, time- and spin-resolved photoemission. J. Electron Spectrosc. Relat. Phenom. 200, 94–118 (2015)

    Article  Google Scholar 

  137. Fujiwara, H., Kiss, T., Wakabayashi, Y.K., Nishitani, Y., Mori, T., Nakata, Y., Kitayama, S., Fukushima, K., Ikeda, S., Fuchimoto, H., et al.: Soft x-ray angle-resolved photoemission with micro-positioning techniques for metallic v2o3. J. Synchrotron Radiat. 22(3), 776–780 (2015)

    Article  Google Scholar 

  138. Tusche, C., Krasyuk, A., Kirschner, J.: Spin resolved bandstructure imaging with a high resolution momentum microscope. Ultramicroscopy 159, 520–529 (2015)

    Article  Google Scholar 

  139. Hendee, W.R.: Physics and applications of medical imaging. Rev. Mod. Phys. 71, S444–S450 (1999)

    Article  Google Scholar 

  140. Kathiravan, S., Kanakaraj, J.: A review on potential issues and challenges in MR imaging. Sci. World J. 2013, 783715 (2013)

    Google Scholar 

  141. Odaibo, S.G.: Quantum Mechanics and the MRI Machine. Symmetry Seed Books, Arlington (2012)

    Google Scholar 

  142. Plewes, D.B., Kucharczyk, W.: Physics of MRI: a primer. J. Magn. Reson. Imaging 35, 1038–1054 (2012)

    Article  Google Scholar 

  143. Edelman, R.R., Warach, S.: Magnetic resonance imaging. N. Engl. J. Med. 328(10), 708–716 (1993)

    Article  Google Scholar 

  144. Blundell, S.J.: Magnetism in Condensed Matter. Oxford University Press, Oxford (2014)

    Google Scholar 

  145. Jung, B.A., Weigel, M.: Spin echo magnetic resonance imaging. J. Magn. Reson. Imaging 37(4), 805–817 (2013)

    Article  Google Scholar 

  146. Suits, B.A.: Nuclear quadrupole resonance spectroscopy. In: Vij, D.R. (ed.) Handbook of Applied Solid State Spectroscopy. Springer, Berlin/Heidelberg/New York (2006)

    Google Scholar 

  147. Robert, H., Pusiol, D.: Two-dimensional rotating-frame NQR imaging. J. Magn. Reson. 127(1), 109–114 (1997)

    Article  ADS  Google Scholar 

  148. Nickel, P., Robert, H., Kimmich, R., Pusiol, D.: NQR method for stress and pressure imaging. J. Magn. Reson. Ser. A 111(2), 191–194 (1994)

    Article  ADS  Google Scholar 

  149. Hari, R., Salmelin, R.: Magnetoencephalography: from squids to neuroscience. NeuroImage 61(2), 386–396 (2012)

    Article  Google Scholar 

  150. Braeutigam, S.: Magnetoencephalography: fundamentals and established and emerging clinical applications in radiology. ISRN Radiology 2013, 1–18 (2013)

    Article  Google Scholar 

  151. Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V.: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993)

    Article  ADS  Google Scholar 

  152. Saunus, C., Raphael Bindel, J., Pratzer, M., Morgenstern, M.: Versatile scanning tunneling microscopy with 120 ps time resolution. Appl. Phys. Lett. 102(5), 051601 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A large number of students, postdocs, colleagues, and collaborators have also been involved in the authors’ research efforts on magnetic imaging over the years, only a few examples of which we have been able to present here. Without these individuals, this work would not have been possible, and we gratefully acknowledge all their contributions and insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Kläui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Reeve, R.M., Elmers, HJ., Büttner, F., Kläui, M. (2021). Magnetic Imaging and Microscopy. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_28

Download citation

Publish with us

Policies and ethics