Skip to main content

Magnetic Nanoparticles

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

The physics of ideal single-domain nanoparticles is reviewed, followed by a discussion of how the behavior of real particles can differ. The main synthetic approaches are surveyed, and the advantages of different methods are identified. The magnetic properties of the nanoparticles are related to their use in applications including magnetic separation, ferrofluids, magnetic recording media, and biomedicine. Topics of recent interest are discussed, along with future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coffey, W.T., Kalmykov, Y.P.: Thermal fluctuations of magnetic nanoparticles: fifty years after Brown. J. Appl. Phys. 112, 121301 (2012)

    Article  ADS  Google Scholar 

  2. Majetich, S.A., Sachan, M.: Magnetostatic interactions in magnetic nanoparticle assemblies: energy, time, and length scales. J. Phys. D. 39, R407–R422 (2006)

    Article  ADS  Google Scholar 

  3. Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Application of magnetic nanoparticles in biomedicine. J. Phys. D. 36, R167–R168 (2003)

    Article  ADS  Google Scholar 

  4. Krishnan, K.M.: Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn. 46, 2523 (2010)

    Article  ADS  Google Scholar 

  5. Perigo, E.A., Hemery, G., Sandre, O., Ortega, D., Garaio, E., Plazaola, F., Teran, F.J.: Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2, 041302 (2015)

    Article  ADS  Google Scholar 

  6. Frenkel, J., Dorfman, J.: Spontaneous and induced magnetization in ferromagnetic bodies. Nature. 126, 274 (1930)

    Article  ADS  MATH  Google Scholar 

  7. Bitter, F.: On inhomogeneities in the magnetization of ferromagnetic materials. Phys. Rev. 38, 1903 (1931)

    Article  ADS  Google Scholar 

  8. McCurrie, R.A.: Ferromagnetic Materials. Structure and Properties. Academic Press, New York (1994)

    Google Scholar 

  9. Majetich, S.A., Wen, T., Mefford, O.T.: Magnetic nanoparticles. Mater. Res. Soc. Bull. 38, 899 (2013)

    Article  Google Scholar 

  10. Berger, L., Labaye, Y., Tamine, M., Coey, J.M.D.: Ferromagnetic nanoparticles with strong surface anisotropy: spin structures and magnetization processes. Phys. Rev. B. 77, 104431 (2008)

    Article  ADS  Google Scholar 

  11. Stoner, E.C., Wohlfarth, E.P.: Trans. R. Soc. (London) A. 240, 599 (1948)

    ADS  Google Scholar 

  12. Brown Jr., W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677 (1963)

    Article  ADS  Google Scholar 

  13. Luborsky, F.E.: High coercive materials. J. Appl. Phys. 32, 171S (1961)

    Article  ADS  Google Scholar 

  14. Sharrock, M.P.: Time-dependent magnetic phenomena and particle-size effects in recording media. IEEE Trans. Magn. 26, 193 (1990)

    Article  ADS  Google Scholar 

  15. Néel, L.: Sur les effets des interactions entre les domaines élémentaires ferromagnétiques: Bascule et reputation. J. Phys. Radium. 20, 215 (1959)

    Article  Google Scholar 

  16. Evans, R.F.L., Fan, W.J., Chureemart, P., Ostler, T.A., Ellis, M.O.A., Chantrell, R.W.: Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter. 26, 103202 (2014)

    Article  ADS  Google Scholar 

  17. Khurshid, H., Li, W., Phan, M.-H., Mukherjee, P., Hadjipanayis, G.C., Srikanth, H.: Surface spin disorder and exchange-bias in hollow maghemite nanoparticles. Appl. Phys. Lett. 101, 022403 (2012)

    Article  ADS  Google Scholar 

  18. Givord, D., Skumryev, V., Nogues, J.: Exchange coupling mechanism for magnetization reversal and thermal stability of Co nanoparticles embedded in a CoO matrix. J. Magn. Magn. Mater. 294, 111 (2005)

    Article  ADS  Google Scholar 

  19. Hoffman, A.: Symmetry driven irreversibilities at ferromagnetic-antiferromagnetic interfaces. Phys. Rev. Lett. 93, 097203 (2004)

    Article  ADS  Google Scholar 

  20. O’Grady, K., Fernandez-Outon, L.E., Vallejo-Fernandez, G.: A new paradigm for exchange bias in polycrystalline thin films. J. Magn. Magn. Mater. 322, 883 (2010)

    Article  ADS  Google Scholar 

  21. Mazo-Zuluaga, J., Restrepo, J., Munoz, F., Mejia-Lopez, J.: Surface anisotropy, hysterestic, and magnetic properties of magnetite nanoparticles: a simulation study. J. Appl. Phys. 105, 123907 (2009)

    Article  ADS  Google Scholar 

  22. De Biasi, E., Ramos, C.A., Zysler, R.D., Romero, H.: Large surface magnetic contribution in amorphous ferromagnetic nanoparticles. Phys. Rev. B. 65, 144416 (2002)

    Article  ADS  Google Scholar 

  23. Yanes, R., Chubykalo-Fesenko, O., Kachhachi, H., Garanin, D.A., Evans, R., Chantrell, R.W.: Effective anisotropies and energy barriers of magnetic nanoparticles with Neel surface anisotropy. Phys. Rev. B. 76, 064416 (2007)

    Article  ADS  Google Scholar 

  24. Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., Li, G.: Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273 (2004)

    Article  Google Scholar 

  25. Nedelkoski, Z., Kepaptsoglou, D., Lari, L., Wen, T., Booth, R.A., Oberdick, S.D., Gilks, D., Ramasse, Q.M., Evans, R.F.L., Majetich, S.A., Lazarov, V.K.: Origin of reduced magnetization and domain formation in small magnetite nanoparticles. Sci. Rep. 7, 45997 (2017)

    Article  ADS  Google Scholar 

  26. Salafranca, J., Gazquez, J., Perez, N., Labarta, A., Pantelides, S.K., Pennycook, S.J., Batlle, X., Varela, M.: Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett. 12, 2499 (2012)

    Article  ADS  Google Scholar 

  27. Kodama, R.H., Berkowitz, A.E., McNiff Jr., E.J., Foner, S.: Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77, 394 (1996)

    Article  ADS  Google Scholar 

  28. Kodama, R.H., Berkowitz, A.E.: Atomic-scale modeling of oxide nanoparticles. Phys. Rev. B. 59, 6321 (1999)

    Article  ADS  Google Scholar 

  29. Kovacs, A., Sato, K., Lazarov, V.K., Galindo, P.L., Konno, T.J., Hirotsu, Y.: Direct observation of a surface induced disordering process in magnetic nanoparticles. Phys. Rev. Lett. 103, 115703 (2009)

    Article  ADS  Google Scholar 

  30. Khurshid, H., Li, W., Chandra, S., Phan, M.-H., Hadjipanayis, G.C., Mukherjee, P., Srikanth, H.: Mechanism and controlled growth of shape and size variant core/shell FeO/Fe3O4 nanoparticles. Nanoscale. 5, 7942 (2013)

    Article  ADS  Google Scholar 

  31. Unni, M., Uhl, A.M., Savliwala, S., Savitzky, B.H., Dhavalikar, R., Garraud, N., Arnold, D.P., Kourkoutis, L.F., Andrews, J.S., Rinaldi, C.: Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano. 11, 2284 (2017)

    Article  Google Scholar 

  32. Lee, S., Fursina, A., Mayo, J.T., Yavuz, C.T., Colvin, V.L., Sofin, R.G.S., Shvets, I.V., Natelson, D.: Electrically driven phase transition in magnetite nanostructures. Nat. Mater. 7, 130 (2008)

    Article  ADS  Google Scholar 

  33. Poddar, P., Fried, T., Markovich, G.: First order metal-insulator transition and spin-polarized tunneling in Fe3O4 nanocrystals. Phys. Rev. B. 65, 172405 (2002)

    Article  ADS  Google Scholar 

  34. Lee, J., Kwon, S.G., Park, J.-G., Hyeon, T.: Size dependence of metal-insulator transition in stoichiometric Fe3O4 nanocrystals. Nano Lett. 15, 4337 (2015)

    Article  ADS  Google Scholar 

  35. Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  36. Song, Q., Zhang, Z.J.: Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 126, 6164 (2004)

    Article  Google Scholar 

  37. Ahniyaz, A., Sakamoto, Y., Bergström, L.: Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes. Proc. Natl. Acad. Sci. 104, 17570 (2007)

    Article  ADS  Google Scholar 

  38. Singh, G., Chan, H., Baskin, A., Gelman, E., Repnin, N., Král, P., Klajn, R.: Self-assembly of magnetite nanocubes into helical superstructures. Science. 345, 1149 (2014)

    Article  ADS  Google Scholar 

  39. Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 25, 3327 (1989)

    Article  ADS  Google Scholar 

  40. Zhang, J., Boyd, C., Luo, W.: Two mechanisms and a scaling relation for dynamics in ferrofluids. Phys. Rev. Lett. 77, 390 (1996)

    Article  ADS  Google Scholar 

  41. Yamamoto, K., Majetich, S.A., McCartney, M.R., Sachan, M., Yamamuro, S., Hirayama, T.: Direct visualization of dipolar ferromagnetism and domain structures in Co nanoparticle monolayers. Appl. Phys. Lett. 93, 082502 (2008)

    Article  ADS  Google Scholar 

  42. Yamamoto, K., Hogg, C.R., Yamamuro, S., Hirayama, T., Majetich, S.A.: Dipolar ferromagnetic phase transition in Fe3O4 nanoparticle arrays. Appl. Phys. Lett. 98, 072509 (2011)

    Article  ADS  Google Scholar 

  43. Petracic, O., Glatz, A., Kleemann, W.: Models for the magnetic ac susceptibility of granular superferromagnetic CoFe/Al2O3. Phys. Rev. B. 70, 214432 (2004)

    Article  ADS  Google Scholar 

  44. Farrell, D., Cheng, Y., McCallum, R.W., Majetich, S.A.: Magnetic interactions of iron nanoparticles in arrays and dilute dispersions. J. Phys. Chem. B. 109, 13409–13419 (2005)

    Article  Google Scholar 

  45. Petracic, O., Chen, X., Bedanta, S., Kleemann, W., Sahoo, S., Cardoso, S., Freitas, P.P.: Collective states of interacting ferromagnetic nanoparticles. J. Magn. Magn. Mater. 300, 192 (2006)

    Article  ADS  Google Scholar 

  46. La Mer, V.K., Dinegar, R.H.: Theory, production, and mechanism of formation of monodisupersed hydrosols. J. Am. Chem. Soc. 72, 4847 (1950)

    Article  Google Scholar 

  47. Billas, I.M.L., Chatelain, A., de Heer, W.A.: Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science. 265, 1682 (1994)

    Article  ADS  Google Scholar 

  48. Balasubramanian, B., Manchanda, P., Skomski, R., Mukherjee, P., Das, B., Geoge, T.A., Hadjipanayis, G.C., Sellmyer, D.J.: Unusual spin correlations in a nanomagnet. Appl. Phys. Lett. 106, 242401 (2015)

    Article  ADS  Google Scholar 

  49. Xu, Y.H., Hosein, S., Judy, J.H., Wang, J.P.: Iron nitride nanoparticles by naocluster deposition. J. Appl. Phys. 97, 10F915 (2005)

    Article  Google Scholar 

  50. Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 287, 1989 (2000)

    Article  ADS  Google Scholar 

  51. Yu, W.W., Falkner, J.C., Yavus, C.T., Colvin, V.L.: Synthesis of monodisperse iron oxide nanocrystals by decomposition of iron carboxylate salts. Chem. Commun. 20, 2306 (2004)

    Article  Google Scholar 

  52. Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.J., Park, J.-H., Hwang, N.M., Hyeon, T.: Ultra-large-scale syntheses of monodisperse nanocrysals. Nat. Mater. 3, 891 (2004)

    Article  ADS  Google Scholar 

  53. Massart, R.: Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17, 1247 (1981)

    Article  ADS  Google Scholar 

  54. Molday, R.S., Mackenzie, D.: Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods. 52, 353 (1982)

    Article  Google Scholar 

  55. Berry, C.C., Curtis, A.S.G.: Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys. 36, R198–R206 (2003)

    Article  ADS  Google Scholar 

  56. Torchilin, V.P.: Targeted pharmaceutical nanocarriers for cancer therapy and imaging. Am. Assoc. Pharm. Sci. J. 9, E128 (2007)

    Google Scholar 

  57. Marciello, M., Connord, V., Veintemillas-Verdaguer, S., Verges, M.A., Carrey, J., Respaud, M., Serna, C.J., Morales, M.P.: Large scale production of biocompatible magnetite nanocrystals with high saturation magnetization values through green aqueous synthesis. J. Mater. Chem. B. 1, 5995 (2013)

    Article  Google Scholar 

  58. Gutiérrez, L., Costo, R., Grüttner, C., Westphal, F., Gehrke, N., Heinke, D., Fornara, A., Pankhurst, Q.A., Johansson, C., Veintemillas-Verdaguera, S., Morales, M.P.: Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications. Dalton Trans. 44, 2943 (2015)

    Article  Google Scholar 

  59. Zhao, H., Saatchi, K., Hafeli, U.O.: Preparation of biodegradable magnetic microspheres with poly (lactic acid)-coated magnetite. J. Magn. Magn. Mater. 320, 1356 (2009)

    Article  ADS  Google Scholar 

  60. da Costa, G.M., Blanco-Andujar, C., De Grave, E., Pankhurst, Q.A.: Magnetic nanoparticles for in vivo use: a critical assessment of their composition. J. Phys. Chem. B. 118, 11738 (2014)

    Article  Google Scholar 

  61. Hofmann-Amtenbrink, M., Grainger, D.W., Hofmann, H.: Nanoparticles in medicine: current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomedicine. 11, 1689 (2015)

    Article  Google Scholar 

  62. Wells, J., Kazakova, O., Posth, O., Steinhoff, U., Petronis, S., Bogart, L.K., Southern, P., Pankhurt, Q., Johansson, C.: Standardisation of magnetic nanoparticles in liquid suspension. J. Phys. D. 50, 383003 (2017)

    Article  ADS  Google Scholar 

  63. Olsson, R.T., Azizi Samir, M.A., Salazar-Alvarez, G., Belova, L., Ström, V., Bergland, L.A., Ikkala, O., Nogues, J., Gedde, U.W.: Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 5, 584 (2010)

    Article  ADS  Google Scholar 

  64. Ziolo, R.F., Giannelis, E.P., Weinstein, B., O’Horo, M.P., Ganguly, B.N., Mehrotra, V., Russell, M.W., Huffman, D.R.: Matrix-mediated synthesis of nanocrystalline γ-Fe2O3: a new optically transparent magnetic material. Science. 257, 219 (1992)

    Article  ADS  Google Scholar 

  65. Xu, X.L., Majetich, S.A., Asher, S.A.: Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals. J. Am. Chem. Soc. 124, 13864 (2002)

    Article  Google Scholar 

  66. Ramanujan, R.V., Lao, L.L.: The mechanical behavior of smart magnet-hydrogel composites. Smart Mater. Struct. 15, 952 (2006)

    Article  ADS  Google Scholar 

  67. Yellen, B.B., Hovorka, O., Friedman, G.: Arranging matter by magnetic nanoparticle assemblers. Proc. Natl. Acad. Sci. 102, 8860 (2005)

    Article  ADS  Google Scholar 

  68. Yellen, B.B., Erb, R.M., Son, H.S., Hewlin Jr., R., Shang, H., Lee, G.U.: Traveling wave magnetophoresis for high resolution chip based separations. Lab Chip. 7, 1681 (2007)

    Article  Google Scholar 

  69. Lim, J.K., Lanni, C., Evarts, E., Lanni, F., Tilton, R.D., Majetich, S.A.: Magnetophoresis of nanoparticles. ACS Nano. 5, 217–226 (2011)

    Article  Google Scholar 

  70. Lim, J.K., Tan, D.X., Lanni, F., Tilton, R.D., Majetich, S.A.: Optical imaging and magnetophoresis of nanorods. J. Magn. Magn. Mater. 321, 1557–1562 (2009)

    Article  ADS  Google Scholar 

  71. Zimmerman, P.A., Thomson, J.M., Fujioka, H., Collins, W.E., Zborowski, M.: Diagnosis of malaria by magnetic deposition microscopy. Am. J. Trop. Med. Hyg. 74, 568 (2006)

    Article  Google Scholar 

  72. Osterfeld, S.J., Yu, H., Gaster, R.S., Caramuta, S., Xu, L., Han, S.-J., Hall, D.W., Wilson, R.J., Sun, S., White, R.L., Davis, R.W., Pourmand, N., Wang, S.X.: Proc. Natl. Acad. Sci. 105, 20637 (2008)

    Article  ADS  Google Scholar 

  73. Schotter, J., Shoshi, A., Brueckl, H.: Development of a magnetic lab-on-a-chip for point-of-care sepsis diagnosis. J. Magn. Magn. Mater. 321, 1671–1675 (2009)

    Article  ADS  Google Scholar 

  74. Vosen, S., Rieck, S., Heidsieck, A., Mykhaylyk, O., Zimmermann, K., Bloch, W., Eberbeck, D., Plank, C., Gleich, B., Pfeifer, A., Fleischmann, B.K., Wenzel, D.: Vascular repair by circumferential cell therapy using magnetic nanoparticles and tailored magnets. ACS Nano. 10, 369 (2016)

    Article  Google Scholar 

  75. Polyak, B., Medved, M., Lazareva, N., Steele, L., Patel, T., Rai, A., Rotenberg, M.Y., Wasko, K., Kohut, A.R., Sensenig, R., Friedman, G.: Magnetic nanoparticle-mediated targeting of cell therapy in stent stenosis in injured arteries. ACS Nano. 10, 9559 (2016)

    Article  Google Scholar 

  76. Dutz, S., Kettering, M., Hilger, I., Mueller, R., Zeisberger, M.: Magnetic multicore nanoparticles for hyperthermia – influence of particle immobilization in tumour tissue on magnetic nanoparticles. Nanotechnology. 22, 265102 (2011)

    Article  ADS  Google Scholar 

  77. Shademani, A., Zhang, H., Jackson, J.K., Chiao, M.: Active regulation of on-demand drug delivery by magnetically triggerable microspouters. Adv. Funct. Mater. 27, 1604558 (2017)

    Article  Google Scholar 

  78. Miller, M.A., Gadde, S., Pfirschke, C., Engblom, C., Sprachman, M.M., Kohler, R.H., Yang, K.S., Laughney, A.M., Wojtkiewicz, G., Kamaly, N., Bhonagiri, S., Pittet, M.J., Farokhzad, O.C., Weissleder, R.: Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl. Med. 7, 314ra183 (2015)

    Article  Google Scholar 

  79. Felfoul, O., Mohammadi, M., Taherkhani, S., de Lanauze, D., Xu, Y.Z., Loghin, D., Essa, S., Jancik, S., Houle, D., Lafleur, M., Gaboury, L., Tabrizian, M., Kaou, N., Atkin, M., Vuong, T., Batist, G., Beauchemin, N., Radzioch, D., Martel, S.: Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechno. 11, 941 (2016)

    Article  ADS  Google Scholar 

  80. Kim, D.H., Rozhkova, E.A., Ulasov, I., Bader, S.D., Rajh, T., Lesniak, M., Novosad, V.: Biofunctionalized magnetic vortex microdisks for targeted cancer cell destruction. Nat. Mater. 9, 165 (2010)

    Article  ADS  Google Scholar 

  81. Gilchrist, R.K., Medal, R., Shorey, W.D., Hanselman, R.C., Parrot, J.C., Taylor, C.B.: Selective inductive heating of lymph nodes. J. Ann. Surg. 146, 596 (1957)

    Article  Google Scholar 

  82. Brezovich, I.A.: Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods. Med. Phys. Monogr. 16, 82 (1988)

    Google Scholar 

  83. Guardia, P., Di Corato, R., Lartigue, L., Wilhelm, C., Espinosa, A., Garcia-Hernandez, M., Gazeau, F., Manna, L., Pellegrino, T.: Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 6, 3080 (2012)

    Article  Google Scholar 

  84. Wildeboer, R.R., Southern, P., Pankhurst, Q.A.: On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. J. Phys. D. Appl. Phys. 47, 495003 (2014)

    Article  Google Scholar 

  85. Gomez, H.F., McClafferty, H.H., Flow, D., Brent, J., Dart, R.C.: Prevention of gastrointestinal iron absorption by chelation from an orally administered premixed deferoxamine/charcoal slurry. Ann. Emerg. Med. 30, 587 (1997)

    Article  Google Scholar 

  86. Raikher, Y.L., Stepanov, V.I.: Physical aspects of magnetic hyperthermia: low-frequency ac field absorption in a magnetic colloid. J. Magn. Magn. Mater. 368, 421 (2014)

    Article  ADS  Google Scholar 

  87. Serantes, D., Baldomir, D., Martinez-Boubeta, C., Simeonidis, K., Angelakeris, M., Natividad, E., Castro, M., Mediano, A., Chen, D.-X., Sanchez, A., Balcells, L., Martınez, B.: Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. J. Appl. Phys. 108, 073918 (2010)

    Article  ADS  Google Scholar 

  88. Ruta, S., Hovorka, O., Chantrell, R.: Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles. Sci. Rep. 5, 9090 (2015)

    Article  Google Scholar 

  89. Cervadoro, A., Giverso, C., Pande, R., Sarangi, S., Preziosi, L., Wosik, J., Brazdeikis, A., Decuzzi, P.: Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles. PLoS One. 8, e57332 (2013)

    Article  ADS  Google Scholar 

  90. Dennis, C.L., Krycka, K.L., Borchers, J.A., Desautels, R.D., van Lierop, J., Huls, N.F., Jackson, A.J., Gruettner, C., Ivkov, R.: Internal magnetic structure of nanoparticles dominates time-dependent relaxation processes in a magnetic field. Adv. Funct. Mater. 25, 2300 (2015)

    Article  Google Scholar 

  91. Di Corato, R., Espinosa, A., Lartigue, L., Tharaud, M., Chat, S., Pellegrino, T., Menager, C., Gazeau, F., Wilhelm, C.: Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials. 35, 6400 (2014)

    Article  Google Scholar 

  92. Etheridge, M.L., Hurley, K.R., Zhang, J., Jeon, S., Ring, H.L., Hogan, C., Haynes, C.L., Garwood, M., Bischof, J.C.: Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology. 2, 214 (2014)

    Article  Google Scholar 

  93. Soukup, D., Moise, S., Cespedes, E., Dobson, J., Telling, N.D.: In situ measurement of magnetization relaxation of internalized nanoparticles in live cells. ACS Nano. 9, 231 (2015)

    Article  Google Scholar 

  94. Rabin, Y.: Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? Int. J. Hyperth. 18, 194 (2002)

    Article  Google Scholar 

  95. Eggeman, A., Majetich, S.A., Farrell, D.F., Pankhurst, A.Q.: Size and concentration effects on high frequency hysteresis of iron oxide nanoparticles. IEEE Trans. Magn. 43, 2451–2453 (2007)

    Article  ADS  Google Scholar 

  96. Riedinger, A., Guardia, P., Curcio, A., Garcia, M., Cingolani, R., Manna, L., Pellegrino, T.: Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles. Nano Lett. 13, 2399 (2013)

    Article  ADS  Google Scholar 

  97. Huang, H., Delikanli, S., Zeng, H., Ferke, D.N., Pralle, A.: Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechno. 5, 602 (2008)

    Article  ADS  Google Scholar 

  98. Dobson, J.: Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 3, 139 (2008)

    Article  ADS  Google Scholar 

  99. Gneveckow, U., Jordan, A., Scholz, R., Bruss, V., Waldofner, N., Ricke, J., Feussner, A., Hildebrandt, B., Rau, B., Wust, P.: Description and characterization of the novel hyperthermia-and thermoablation system MFH 300F for clinical magnetic fluid hyperthermia. Med. Phys. 31, 1444 (2004)

    Article  Google Scholar 

  100. Schwan, H.P.: Interaction of microwave and radio frequency radiation with biological systems. IEEE Trans. Microw. Theory Tech. 19, 146 (1971)

    Article  ADS  Google Scholar 

  101. Johnson, C.C., Durney, C.H., Massoudi, H.: Long wavelength electromagnetic power absorption in prolate spheroid models of man and animals. IEEE Trans. Microw. Theory Tech. 23, 739 (1975)

    Article  ADS  Google Scholar 

  102. Chatterjee, I., Hagemann, M.J., Gandhi, O.P.: Electromagnetic absorption in a multilayered slab model of tissue under near-field exposure condition. Bioelectromagnetics. 1, 379 (1980)

    Article  Google Scholar 

  103. Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature. 435, 1214 (2005)

    Article  ADS  Google Scholar 

  104. Hensley, D., Tay, Z.W., Dhavalikar, R., Zheng, B., Goodwill, P., Rinaldi, C., Conolly, S.: Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys. Med. Biol. 62, 3483 (2017)

    Article  Google Scholar 

  105. Kim, B.H., Lee, N., Kim, H., An, K., Park, Y.I., Choi, Y., Shin, K., Lee, Y., Kwon, S.G., Na, H.B., Park, J.-G., Ahn, T.Y., Kim, Y.W., Moon, W.K., Choi, S.H., Hyeon, T.: Large-scale synthesis of uniform and extremely small–sized iron oxide nanoparticles for high-resolution T1Magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 133, 12624 (2011)

    Article  Google Scholar 

  106. Lee, J.-H., Huh, Y.-M., Jun, Y., Seo, W., Jang, J., Song, H.-T., Kim, S., Cho, E.-J., Yoon, H.-G., Suh, J.-S., Cheon, J.: Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95 (2007)

    Article  Google Scholar 

  107. Zhou, Z., Wang, L., Chi, X., Bao, J., Yang, L., Zhaom, W., Chen, Z., Chen, X., Gao, J.: Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano. 7, 3287 (2013)

    Article  ADS  Google Scholar 

  108. Gider, S., Awschalom, D.D., Douglas, T., Mann, S.: Classical and quantum magnetic phenomena in natural and artificial ferritin proteins. Science. 268, 5207 (1995)

    Article  Google Scholar 

  109. Pierre, T.G.S., Clark, P.R., Chu-anusom, W., Fleming, A.J., Jeffrey, G.P., Olynyk, J.K., Pootrakul, P., Robins, E., Lindeman, R.: Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood. 105, 855–861 (2005)

    Article  Google Scholar 

  110. Castellani, R.J., Moreira, P.I., Liu, G., Dobson, J., Perry, G., Smith, M.A., Zhu, X.: Iron: the redox-active center of oxidative stress in Alzheimer disease. Neurochem. Res. 32, 1640 (2007)

    Article  Google Scholar 

  111. Zabow, G., Dodd, S., Moreland, J., Koretsky, A.: Micro-engineered local field control for high-sensitivity multispectral MRI. Nature. 453, 1058 (2008)

    Article  ADS  Google Scholar 

  112. Moskowitz, R., Rosensweig, R.E.: Nonmechanical torque-driven flow of a ferromagnetic fluid by an electromagnetic field. Appl. Phys. Lett. 11, 301 (1967)

    Article  ADS  Google Scholar 

  113. Butter, K., Bomans, P.H.H., Frederik, P.M., Vroege, G.J., Philipse, A.P.: Direct observation of dipolar chains in iron ferrofluids by cryogenis electron microscopy. Nat. Mater. 2, 88 (2003)

    Article  ADS  Google Scholar 

  114. Torres-Diaz, I., Rinaldi, C.: Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter. 10, 8584 (2014)

    Article  ADS  Google Scholar 

  115. Shliomis, M.I., Lyubimova, T.P., Lyubimov, D.V.: Ferrohydrodynamics: an essay on the progress of ideas. Chem. Eng. Commun. 67, 275 (1988)

    Article  Google Scholar 

  116. Odenbach, S.: Ferrofluids and their applications. MRS Bull. 38, 921 (2013)

    Article  Google Scholar 

  117. Chaudhary, V., Wang, Z., Ray, A., Sridhar, I., Ramanujan, R.: Self pumping magnetic cooling. J. Phys. D. 50, 03LT03 (2017)

    Article  Google Scholar 

  118. Lu, P., Charap, S.: High density magnetic recording media design and identification: susceptibility to thermal decay. IEEE Trans. Magn. 31, 2767 (1995)

    Article  ADS  Google Scholar 

  119. Weller, D., Moser, A., Folks, L., Best, M.E., Lee, W., Toney, M.F., Schwickert, M., Thiele, J.-U., Doerner, M.F.: High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 36, 10–15 (2000)

    Article  ADS  Google Scholar 

  120. Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., Nogues, J.: Beating the superparamagnetic limit with exchange bias. Nature. 423, 850–853 (2003)

    Article  ADS  Google Scholar 

  121. Victora, R.H., Shen, X.: Exchange coupled composite media for perpendicular magnetic recording. IEEE Trans. Magn. 41, 2828 (2005)

    Article  ADS  Google Scholar 

  122. Meyer, G., Thiele, J.-U.: FePt for HAMR. Phys. Rev. B. 73, 214438 (2006)

    Article  ADS  Google Scholar 

  123. Bauer, M., Fassbender, J., Hillebrands, B., Stamps, R.L.: Switching behavior of a stoner particle beyond the relaxation time limit. Phys. Rev. B. 61, 3410 (2000)

    Article  ADS  Google Scholar 

  124. Back, C.H., Weller, D., Heidmann, J., Mauri, D., Guarisco, D., Garwin, E.L., Siegmann, H.C.: Magnetization reversal in ultrashort magnetic field pulses. Phys. Rev. Lett. 81, 3251 (1998)

    Article  ADS  Google Scholar 

  125. Thomson, T., Lee, S.L., Toney, M.F., Dewhurst, C.D., Ogrin, F.Y., Oates, C.J., Sun, S.: Agglomeration and sintering in annealed FePt nanoparticle assemblies studied by small angle neutron scattering and x-ray diffraction. Phys. Rev. B. 72, 064441 (2005)

    Article  ADS  Google Scholar 

  126. Ding, Y., Majetich, S.A.: Size dependence, nucleation, and phase transformation in FePt nanoparticles. Appl. Phys. Lett. 87, 022508 (2005)

    Article  ADS  Google Scholar 

  127. Li, D., Poudyal, N., Nandwana, V., Jin, Z., Elkins, K., Liu, J.P.: Hard magnetic FePt nanoparticles by salt-matrix annealing. J. Appl. Phys. 99, 08E911 (2006)

    Article  Google Scholar 

  128. Johnston-Peck, A.C., Tracy, J.B.: Phase transformation of alumina-coated FePt nanoparticles. J. Appl. Phys. 111, 07B522 (2012)

    Article  Google Scholar 

  129. Li, Q., Wu, L., Wu, G., Dong, S., Lv, H., Zhang, S., Zhu, W., Casimir, A., Zhu, H., Mendoza-Garcia, A., Sun, S.: New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 15, 2468 (2015)

    Article  ADS  Google Scholar 

  130. Brown, G., Kraczek, B., Janotti, A., Schulthess, T.C., Stocks, G.M., Johnson, D.D.: Competition between ferromagnetism and antiferromagnetism in FePt. Phys. Rev. B. 68, 052405 (2003)

    Article  ADS  Google Scholar 

  131. Antoniak, C., Spasova, M., Trunova, A., Fauth, K., Wilhelm, F., Rogalev, A., Minar, J., Ebert, H., Farle, M., Wende, H.: Inhomogeneous alloying in FePt nanoparticles as a reason for reduced magnetic moments. J. Phys. Condens. Matter. 21, 336002 (2009)

    Article  Google Scholar 

  132. Yang, Y., Chen, C.-C., Scott, M.C., Ophus, C., Xu, R., Pryor Jr., A., Wu, L., Sun, F., Theis, W., Zhou, J., Eisenbach, M., Kent, P.R.C., Sabirianov, R.F., Zeng, H., Ercius, P., Miao, J.: Deciphering chemical order/disorder and material properties at the single-atom level. Nature. 542, 75 (2017)

    Article  ADS  Google Scholar 

  133. Lopez-Ortega, A., Estrader, M., Salazar-Alvarez, G., Roca, A.G., Nogues, J.: Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep. 553, 1 (2015)

    Article  ADS  Google Scholar 

  134. Meiklejohn, W.H., Bean, C.P.: New magnetic anisotropy. Phys. Rev. 105, 904 (1956)

    Article  ADS  Google Scholar 

  135. Goll, D., Macke, S., Berkowitz, A.E., Bertram, H.N.: Magnetic ground states and the role of vortices in ferromagnetic hollow spheres. Physica B. 372, 282 (2006)

    Article  ADS  Google Scholar 

  136. Schladt, T.D., Graf, T., Köhler, O., Bauer, H., Dietzsch, M., Mertins, J., Branscheid, R., Kolb, U., Tremel, W.: Synthesis and magnetic properties of FePt@MnO nanoheteroparticles. Chem. Mater. 24, 525 (2012)

    Article  Google Scholar 

  137. Sun, X., Klapper, A., Su, Y., Nemkovski, K., Wildes, A., Bauer, H., Köhler, O., Schilmann, A., Tremel, W., Petracic, O., Brückel, T.: Magnetism of monomer MnO and heterodimer FePt@MnO nanoparticles. Phys. Rev. B. 95, 134427 (2017)

    Article  ADS  Google Scholar 

  138. Evans, R.F.L., Bate, D., Chantrell, R.W., Yanes, R., Chubykalo-Fesenko, O.: Influence of interfacial roughness on exchange bias in core-shell nanoparticles. Phys. Rev. B. 84, 092404 (2011)

    Article  ADS  Google Scholar 

  139. Salazar-Alvarez, G., Sort, J., Surinäch, S., Baro, M.D., Nogues, J.: Synthesis and size-dependent exchange bias in inverted core-shell MnO|Mn3O4 nanoparticles. J. Am. Chem. Soc. 129, 9102 (2007)

    Article  Google Scholar 

  140. Estrader, M., Lopez-Ortega, A., Estrader, S., Golosovsky, I.V., Salazar-Alvarez, G., Vasilakaki, M., Trohidou, K.N., Varela, M., Stanley, D.C., Sinko, M., Pechan, M.J., Keavney, D.J., Peiro, F., Surinäch, S., Baro, M.D., Nogues, J.: Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nat. Commun. 4, 2960 (2013)

    Article  ADS  Google Scholar 

  141. Berkowitz, A.E., Rodriguez, G.F., Hong, J.I., An, K., Hyeon, T., Agarwal, N., Smith, D.J., Fullerton, E.E.: Antiferromagnetic MnO nanoparticles with ferrimagnetic Mn3O4 shells: doubly inverted core-shell system. Phys. Rev. B. 77, 024403 (2008)

    Article  ADS  Google Scholar 

  142. Wetterskog, E., Tai, C.-W., Grins, J., Bergstrom, L., Salazar-Alvarez, G.: Anomalous magnetic properties of nanoparticles arising from defect structures: topotaxial oxidation of Fe1_x O|Fe3_δO4 core|shell nanocubes to single-phase particles. ACS Nano. 7, 7132 (2013)

    Article  Google Scholar 

  143. Liu, F., Zhu, J., Yang, W., Dong, Y., Hou, Y., Zhang, C., Yin, H., Sun, S.: Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell. Angew. Chem. 126, 2208 (2014)

    Article  ADS  Google Scholar 

  144. Zeng, H., Li, J., Liu, J.P., Wang, Z.L., Sun, S.: Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature. 420, 395 (2002)

    Article  ADS  Google Scholar 

  145. Tang, Z.X., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C.: Size-dependent Curie temperature in nanoscale MnFe2O4 particles. Phys. Rev. Lett. 67, 3602 (1991)

    Article  ADS  Google Scholar 

  146. Lin, P.-C., Huang, P.-C., Song, K.-J., Lin, M.-T.: Enhanced Curie temperatures in Fe and Co magnetic nanoparticle assembly on single-crystalline Al2O3/NiAl (100) with normal metal capping layer. Appl. Phys. Lett. 88, 153117 (2006)

    Article  ADS  Google Scholar 

  147. Nepijko, S.A., Wiesendanger, R.: Size dependence of the curie temperature of separate nickel particles studied by interference electron microscopy. Europhys. Lett. 31, 567 (1995)

    Article  ADS  Google Scholar 

  148. Goodenough, J.B., Loeb, A.L.: Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Phys. Rev. 98, 391 (1955)

    Article  ADS  Google Scholar 

  149. Sawatzky, G.A., Van Der Woude, F., Morrish, A.H., Mossbauer, A.H.: Study of several ferrimagnetic spinels. Phys. Rev. 187, 747–757 (1969)

    Article  ADS  Google Scholar 

  150. Coey, J.M.D.: Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140 (1971)

    Article  ADS  Google Scholar 

  151. Darbandi, M., Stromberg, F., Landers, J., Reckers, N., Sanyal, B., Keune, W., Wende, H.: Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J. Phys. Appl. Phys. 45, 195001 (2012)

    Article  ADS  Google Scholar 

  152. Ngo, A.T., Bonville, P., Pileni, M.P.: Spin canting and size effects in nanoparticles of nonstoichiometric cobalt ferrite. J. Appl. Phys. 89, 3370–3376 (2001)

    Article  ADS  Google Scholar 

  153. Zysler, R.D., Fiorani, D., Testa, A.M., Suber, L., Agostinelli, E., Godinho, M.: Size dependence of the spin-flop transition in hematite nanoparticles. Phys. Rev. B. 68, 212408 (2003)

    Article  ADS  Google Scholar 

  154. Marx, J., Huang, H., Salih, K.S.M., Thiel, W.R., Schünemann, V.: Spin canting in ferrite nanoparticles. Hyperfine Interact. 237, 41 (2016)

    Article  ADS  Google Scholar 

  155. Skoropata, R., Desautels, D., van Lierop, J.: γ-Fe2O3 nanoparticle intrinsic magnetism dependence on iron-ion availability during synthesis. J. Appl. Phys. 105, 07B503 (2009)

    Article  Google Scholar 

  156. Krycka, K.L., Borchers, J.A., Borchers, J.A., Ijiri, Y., Chen, W.C., Watson, S.M., Laver, M., Gentile, T.R., Harris, S., Dedon, L.R., Rhyne, J.J., Majetich, S.A.: Visualizing core-shell morphology of structurally uniform magnetite nanoparticles. Phys. Rev. Lett. 104, 207203 (2010)

    Article  ADS  Google Scholar 

  157. Krycka, K., Borchers, J., Ijiri, Y., Booth, R., Majetich, S.: Polarization-analyzed small-angle neutron scattering. II. Mathematical angular analysis. J. Appl. Crystallogr. 45, 554 (2012)

    Article  Google Scholar 

  158. Hasz, K., Ijiri, Y., Krycka, K.L., Borchers, J.A., Booth, R.A., Oberdick, S.D., Majetich, S.A.: Particle moment canting in CoFe2O4 nanoparticles. Phys. Rev. B. 90, 180405(R) (2014)

    Article  ADS  Google Scholar 

  159. Oberdick, S.D., Abdelgawad, A., Moya, C., Mesbahi-Vasey, S., Kepaptsoglou, D., Lazarov, V.K., Evans, R.F.L., Meilak, D., Skoropata, E., van Lierop, J., Hunt-Isaak, I., Pan, H., Ijiri, Y., Krycka, K.L., Borchers, J.A., Majetich, S.A.: Spin canting across core/shell Fe3O4/MnxFe3-xO4 nanoparticles. Sci. Rep. 8, 3425 (2018)

    Article  ADS  Google Scholar 

  160. Negi, D.S., Sharona, H., Bhat, U., Palchoudhury, S., Gupta, A., Datta, R.: Surface spin canting in Fe3O4 and CoFe2O4 nanoparticles probed by high-resolution electron energy loss spectroscopy. Phys. Rev. B. 95, 174444 (2017)

    Article  ADS  Google Scholar 

  161. Rugar, D., Budakian, R., Mamin, H.J., Chui, B.W.: Single spin detection by magnetic resonance force microscopy. Nature. 430, 329 (2004)

    Article  ADS  Google Scholar 

  162. Toyli, D.M., de las Casas, C.F., Christle, D.J., Dobrovitski, V.V., Awschalom, D.D.: Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl. Acad. Sci. 110, 8417 (2013)

    Article  ADS  Google Scholar 

  163. Oka, H., Ignatiev, P.A., Wedekind, S., Rodary, G., Niebergall, L., Stepanyuk, V.S., Sander, D., Kirschner, J.: Spin-dependent quantum interference within a single magnetic nanostructure. Science. 327, 843 (2010). – 8 nm side triangular Co island structure within due to interference

    Article  ADS  Google Scholar 

  164. Kubetzka, A., Ferriani, P., Bode, M., Heinze, S., Bihlmayer, G., von Bergmann, K., Pietsch, O., Blügel, S., Wiesendanger, R.: “Revealing antiferromagnetic order of the Fe monolayer on W(001)” spin-polarized scanning tunneling microscopy and first-principles calculations. Phys. Rev. Lett. 94, 087204 (2005)

    Article  ADS  Google Scholar 

  165. Wernsdorfer, W., Orozco, E.B., Hasselbach, K., Benoit, A., Barbara, B., Demoncy, N., Loiseau, A., Pascard, H., Mailly, D.: Experimental evidence of the Néel-Brown model of magnetization reversal. Phys. Rev. Lett. 78, 1791 (1997)

    Article  ADS  Google Scholar 

  166. Bonet, E., Wernsdorfer, W., Barbara, B., Benoit, A., Mailly, D.: Three-dimensional magnetization reversal measurements in nanoparticles. Phys. Rev. Lett. 83, 4188 (1999)

    Article  ADS  Google Scholar 

  167. Wernsdorfer, W., Thirion, C., Demoncy, N., Pascard, H., Mailly, D., Thiaville, A.: Magnetisation reversal by uniform rotation (Stoner-Wohlfarth model) in fcc cobalt nanoparticles. J. Magn. Magn. Mater. 242, 132 (2002)

    Article  ADS  Google Scholar 

  168. Kirtley, J.R., Paulius, L., Rosenberg, A.J., Palmstron, J.C., Holland, C.M., Spanton, E.M., Schiessl, D., Jermain, C.L., Gibbons, J., Fung, Y.-K.-K., Huber, M.E., Ralph, D.C., Ketchen, M.B., Gibson Jr., G.W., Moler, K.A.: Scanning SQUID susceptometers with sub-micron spatial resolution. Rev. Sci. Instrum. 87, 093702 (2016)

    Article  ADS  Google Scholar 

  169. Du, C., van der Sar, T., Zhou, T.X., Upadhyaya, P., Casola, F., Zhang, H., Onbaslo, M.C., Ross, C.A., Walsworth, R.L., Tserkovnyak, Y., Yakoby, A.: Control and local measurement of the spin chemical potential in a magnetic insulator. Science. 357, 195 (2017)

    Article  ADS  Google Scholar 

  170. Diehl, M.R., Yu, J.-Y., Heath, J.R., Held, G.A., Doyle, H., Sun, S., Murray, C.B.: Crystalline, shape, and surface anisotropy in two crystal morphologies of superparamagnetic cobalt nanoparticles by ferromagnetic resonance. J. Phys. Chem. B. 105, 7913 (2001)

    Article  Google Scholar 

  171. Lee, I., Obukhov, Y., Xiang, G., Hauser, A., Yang, F., Banerjee, P., Pelekhov, D.V., Hammel, P.C.: Nanoscale scanning probe ferromagnetic resonance imaging using localized modes. Nature. 466, 845 (2010)

    Article  ADS  Google Scholar 

  172. Piotrowski, S.K., Matty, M.F., Majetich, S.A.: Magnetic fluctuations in individual superparamagnetic particles. IEEE Trans. Magn. 50, 2303704 (2014)

    Article  Google Scholar 

  173. Lederman, M., Gibson, G.A., Schultz, S.: Observation of thermal switching of a single ferromagnetic particle. J. Appl. Phys. 73, 6961 (1993)

    Article  ADS  Google Scholar 

  174. Thomson, T., Hu, G., Terris, B.D.: Intrinsic distribution of magnetic anisotropy in thin films probed by patterned nanostructures. Phys. Rev. Lett. 96, 257204 (2006)

    Article  ADS  Google Scholar 

  175. Dunin-Borkowski, R.E., Kasama, T., Wei, A., Tripp, S.L., Hytch, M.J., Snoeck, E., Harrison, R.J., Putnis, A.: Off-axis electron holograph of magnetic chains, rings, and planar arrays of magnetic nanoparticles. Microsc. Res. Tech. 64, 390 (2004)

    Article  Google Scholar 

  176. Dunin-Borkowski, R.E., McCartney, M.R., Frankel, R.B., Bazyinski, D.A., Posfai, M., Buseck, P.R.: Magnetic microstructure of magnetotactic bacteria by electron holography. Science. 282, 1868 (1998)

    Article  ADS  Google Scholar 

  177. Gaster, R.S., Hall, D.A., Nielsen, C.H., Osterfeld, S.J., Yu, H., Mach, K.E., Wilson, R.J., Murmann, B., Liao, J.C., Gambhir, S.S., Wang, S.X.: Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat. Med. 15, 1327 (2009)

    Article  Google Scholar 

  178. Shapiro, E.M., Skrtic, S., Koretsky, A.P.: Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn. Reson. Med. 53, 329 (2005)

    Article  Google Scholar 

  179. Radu, I., Vahaplar, K., Stamm, C., Kachel, T., Pontius, N., Durr, H.A., Ostler, T.A., Barker, J., Evans, R.F.L., Chantrell, R.W., Tsukamoto, A., Itoh, A., Kirilyuk, A., Rasing, T., Kimel, A.V.: Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature. 472, 205 (2011)

    Article  ADS  Google Scholar 

  180. Lyberatos, A., Weller, D., Parker, G.J.: Switching time in laser pulse heat-assisted magnetic recording using L10 -FePt nanoparticles. J. Appl. Phys. 117, 133905 (2015)

    Article  ADS  Google Scholar 

  181. Kazantseva, N., Hinzke, D., Chantrell, R.W., Nowak, U.: Linear and elliptical magnetization reversal close to the Curie temperature. Europhys. Lett. 86, 27006 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara A. Majetich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Majetich, S.A. (2021). Magnetic Nanoparticles. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_20

Download citation

Publish with us

Policies and ethics