Skip to main content

Neuroendocrine Regulation of Hydrosaline Metabolism

  • Living reference work entry
  • First Online:
Hydro Saline Metabolism

Abstract

The present chapter will address some evolutionary, historical, and contemporary perspectives concerning the integrative neuroendocrine control of hydrosaline metabolism, focusing on the major neural and endocrine systems implicated in the control of water and sodium balance. This chapter will bring the readers the new advances on the understanding of how our body controls extracellular fluid volume and osmolality, initiating with the sensory afferent mechanisms and advancing on effector responses accomplished by an integrated action of the renin-angiotensin and autonomic systems, atrial natriuretic peptides, and hypothalamic neurohypophysial hormones. We will also discuss the contribution of transcriptomic analyses to the study of magnocellular neurosecretory function, and also how novel regulators (gaseous modulators, endocannabinoids, and glial cells) have increased the complexity of this already robust network. Finally, the chapter will illustrate how the neuroendocrine regulation of hydromineral balance behaves under normal or pathological life span challenges, such as adaptations in response to fetal programing, sex- and age-related management of water/sodium balances, and physical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham WT, Schrier RW. Body fluid volume regulation in health and disease [Internet]. Adv Intern Med. 1994 [cited 2021 Apr 13];39:23–47. Available from: https://pubmed.ncbi.nlm.nih.gov/8140955/

  • Antunes-Rodrigues J, De Castro M, Elias LLK, Valença MM, McCann SM. Neuroendocrine control of body fluid metabolism. Physiol Rev. 2004;84:169–208.

    Article  CAS  PubMed  Google Scholar 

  • Antunes-Rodrigues J, Ruginsk SG, Mecawi AS, Margatho LO, Cruz JC, Vilhena-Franco T, et al. Mapping and signaling of neural pathways involved in the regulation of hydromineral homeostasis. Braz J Med Biol Res. 2013;46(4):327–38. https://doi.org/10.1590/1414-431X20132788

  • Bichet DG. Regulation of thirst and vasopressin release [Internet]. Annu Rev Physiol. 2019 [cited 2021 Apr 13];81:359–73. Available from: https://pubmed.ncbi.nlm.nih.gov/30742785/

  • Bie P. Natriuretic peptides and normal body fluid regulation. Compr Physiol [Internet]. 2018 [cited 2021 Apr 13];8(3):1211–49. Available from: https://pubmed.ncbi.nlm.nih.gov/29978892/

  • Bourque CW. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci. 2008;9:519–31.

    Article  CAS  PubMed  Google Scholar 

  • Bray AA. The evolution of the terrestrial vertebrates: environmental and physiological considerations. Philos Trans R Soc Lond B Biol Sci. 1985;309:289–322. Evol Environ late Silurian early Devonian Discuss Meet London, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Carbrey JM, Agre P. Discovery of the aquaporins and development of the field. Handb Exp Pharmacol [Internet]. 2009 [cited 2021 Apr 8]:3–28. Available from: https://pubmed.ncbi.nlm.nih.gov/19096770/

  • Choe KY, Olson JE, Bourque CW. Taurine release by astrocytes modulates osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus. J Neurosci. 2012;32:12518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciura S, Prager-Khoutorsky M, Thirouin ZS, Wyrosdic JC, Olson JE, Liedtke W, et al. Trpv4 mediates hypotonic inhibition of central osmosensory neurons via taurine gliotransmission. Cell Rep [Internet]. 2018;23(8):2245–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2211124718306685

    Article  CAS  PubMed  Google Scholar 

  • Cowen LE, Hodak SP, Verbalis JG. Age-associated abnormalities of water homeostasis. Endocrinol Metab Clin N Am. 2013;42:349–70.

    Article  Google Scholar 

  • Curtis KS. Estradiol and osmolality: behavioral responses and central pathways. Physiol Behav [Internet]. 2015 Dec 1 [cited 2021 Apr 13];152(Pt B):422–30. Available from: https://pubmed.ncbi.nlm.nih.gov/26074202/

  • Cuzzo B, Padala SA, Lappin SL. Physiology, vasopressin (antidiuretic hormone, ADH). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2022. PMID: 30252325.

    Google Scholar 

  • Dampney RA, Michelini LC, Li DP, Pan HL. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states [Internet]. Am J Physiol Heart Circ Physiol. 2018 [cited 2021 Apr 13];315:H1200–14. Available from: https://pubmed.ncbi.nlm.nih.gov/30095973/

  • Daniels D. Diverse roles of angiotensin receptor intracellular signaling pathways in the control of water and salt intake [Internet]. In: Neurobiology of body fluid homeostasis: transduction and integration. Boca Raton: CRC Press/Taylor & Francis; 2014 [cited 2021 Apr 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24829994

  • De Luca LAJ, Vendramini RC, Pereira DTB, Colombari DAS, David RB, Paula PM, et al. Water deprivation and the double- depletion hypothesis: common neural mechanisms underlie thirst and salt appetite. Braz J Med Biol Res. 2007;40:707–12.

    Article  PubMed  Google Scholar 

  • De Luca LA, Almeida RL, David RB, de Paula PM, Andrade CAF, Menani JV. Participation of α2-adrenoceptors in sodium appetite inhibition during sickness behaviour following administration of lipopolysaccharide. J Physiol [Internet]. 2016 Mar 15 [cited 2021 Apr 13];594(6):1607–16. Available from: https://pubmed.ncbi.nlm.nih.gov/26036817/

  • Di S, Popescu IR, Tasker JG. Glial control of endocannabinoid heterosynaptic modulation in hypothalamic magnocellular neuroendocrine cells. J Neurosci. 2013;33:18331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutra SGV, Paterson A, Monteiro LRN, Greenwood MP, Greenwood M, Amaral LS, et al. Physiological and transcriptomic changes in the hypothalamic-neurohypophysial system after 24 hours of furosemide-induced sodium depletion. Neuroendocrinology. 2021;111:70–86.

    Article  CAS  PubMed  Google Scholar 

  • Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev. 1998;78:583–686.

    Article  CAS  PubMed  Google Scholar 

  • Geerling JC, Loewy AD. Aldosterone in the brain [Internet]. Am J Physiol Renal Physiol. 2009 [cited 2021 Apr 13];297:F559–76. Available from: https://pubmed.ncbi.nlm.nih.gov/19261742/

  • Greenwood MP, Mecawi AS, Hoe SZ, Mustafa MR, Johnson KR, Al-Mahmoud GA, et al. A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol. 2015a;308:R559–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood M, Greenwood MP, Mecawi AS, Loh SY, Rodrigues JA, Paton JFR, et al. Transcription factor CREB3L1 mediates cAMP and glucocorticoid regulation of arginine vasopressin gene transcription in the rat hypothalamus. Mol Brain. 2015b;8:68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guidotti TL. Hydrogen sulfide: advances in understanding human toxicity. Int J Toxicol. 2010;29:569–81.

    Article  CAS  PubMed  Google Scholar 

  • Gutkowska J, Jankowski M, Antunes-Rodrigues J. The role of oxytocin in cardiovascular regulation. Braz J Med Biol Res. 2014;47:206–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiyama TY, Noda M. Sodium sensing in the subfornical organ and body-fluid homeostasis. Neurosci Res. 2016;113:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Hussy N, Deleuze C, Pantaloni A, Desarménien MG, Moos F. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation. J Physiol. 1997;502:609–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iovino M, Giagulli V, Licchelli B, Iovino E, Guastamacchia E, Triggiani V. Synaptic inputs of neural afferent pathways to vasopressin- and oxytocin-secreting neurons of supraoptic and paraventricular hypothalamic nuclei. Endocrine, Metab Immune Disord Targets [Internet]. 2017 Feb 22 [cited 2021 Apr 13];16(4):276–87. Available from: https://pubmed.ncbi.nlm.nih.gov/28056741/

  • Johns EJ, Kopp UC, DiBona GF. Neural control of renal function. Compr Physiol. 2011;1:731–67.

    Article  PubMed  Google Scholar 

  • Jørgensen HS. Studies on the neuroendocrine role of serotonin [Internet]. Dan Med Bull. 2007 [cited 2021 Apr 13];54:266–88.. Available from: https://pubmed.ncbi.nlm.nih.gov/18208678/

  • Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, et al. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli. Ohlstein EH, editor. Pharmacol Rev [Internet]. 2015;67(4):754–819. Available from: http://pharmrev.aspetjournals.org/lookup/doi/10.1124/pr.114.010454

  • Koeppen BM, Stanton BA. Renal physiology|ScienceDirect [Internet]. 2013 [cited 2021 Apr 19]. Available from: https://www.sciencedirect.com/book/9780323086912/renal-physiology

  • Mecawi AS, Ruginsk SG, Elias LLK, Varanda WA, Antunes-Rodrigues J. Neuroendocrine regulation of hydromineral homeostasis. Compr Physiol. 2015a;5:1465–516.

    Article  PubMed  Google Scholar 

  • Mecawi AS, Macchione AF, Nuñez P, Perillan C, Reis LC, Vivas L, et al. Developmental programing of thirst and sodium appetite. Neurosci Biobehav Rev. 2015b;51:1–14.

    Article  PubMed  Google Scholar 

  • Menani JV, De Luca LA, Johnson AK. Role of the lateral parabrachial nucleus in the control of sodium appetite. Am J Physiol Regul Integr Comp Physiol. 2014;306:R201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata S. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Front Neurosci. 2015;9:390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawa P, Gomez J, Grobe JL, Sigmund CD. The renin-angiotensin system in the central nervous system and its role in blood pressure regulation. Curr Hypertens Rep. 2020;22:7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey KN. Biology of natriuretic peptides and their receptors. Peptides. 2005;26:901–32.

    Article  CAS  PubMed  Google Scholar 

  • Pontes RB, Girardi ACC, Nishi EE, Campos RR, Bergamaschi CT. Crosstalk between the renal sympathetic nerve and intrarenal angiotensin II modulates proximal tubular sodium reabsorption. Exp Physiol [Internet]. 2015 Apr 20 [cited 2021 Apr 13];100(5):502–6. Available from: https://pubmed.ncbi.nlm.nih.gov/25858030/

  • Prager-Khoutorsky M, Bourque CW. Mechanical basis of osmosensory transduction in magnocellular neurosecretory neurones of the rat supraoptic nucleus. J Neuroendocrinol. 2015;27:507–15.

    Article  CAS  PubMed  Google Scholar 

  • Ramchandra R, Hood SG, Frithiof R, McKinley MJ, May CN. The role of the paraventricular nucleus of the hypothalamus in the regulation of cardiac and renal sympathetic nerve activity in conscious normal and heart failure sheep. J Physiol [Internet]. 2013 Jan [cited 2021 Apr 13];591(1):93–107. Available from: https://pubmed.ncbi.nlm.nih.gov/22615431/

  • Reis LC. Role of the serotoninergic system in the sodium appetite control. An Acad Bras Cienc. 2007;79:261–83.

    Article  CAS  PubMed  Google Scholar 

  • Ruginsk SG, Vechiato FMV, Elias LLK, Antunes-Rodrigues J. The endocannabinoid system and the neuroendocrine control of hydromineral balance. J Neuroendocrinol. 2014;26:370–6.

    Article  CAS  PubMed  Google Scholar 

  • Ruginsk SG, de Mecawi AS, da Silva MP, Reis WL, Coletti R, de Lima JBM, et al. Gaseous modulators in the control of the hypothalamic neurohypophyseal system. Physiology. 2015;30:127–38.

    Article  CAS  PubMed  Google Scholar 

  • Saker P, Carey S, Grohmann M, Farrell MJ, Ryan PJ, Egan GF, et al. Regional brain responses associated with using imagination to evoke and satiate thirst. Proc Natl Acad Sci U S A. 2020;117:13750–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sata Y, Head GA, Denton K, May CN, Schlaich MP. Role of the sympathetic nervous system and its modulation in renal hypertension [Internet]. Front Med. 2018 [cited 2021 Apr 13];5:82. Available from: https://pubmed.ncbi.nlm.nih.gov/29651418/

  • Shigemura N, Iwata S, Yasumatsu K, Ohkuri T, Horio N, Sanematsu K, et al. Angiotensin II modulates salty and sweet taste sensitivities. J Neurosci [Internet]. 2013;33(15):6267–77. Available from: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5599-12.2013

    Article  CAS  PubMed  Google Scholar 

  • Souza MM, Vechiato FMV, Debarba LK, Leao RM, Dias MVS, Pereira AA, et al. Effects of hyperosmolality on hypothalamic astrocytic area, mRNA expression and glutamate balance in vitro. Neuroscience. 2020;442:286–95.

    Article  CAS  PubMed  Google Scholar 

  • Vivas L, Dadam FM, Caeiro XE. Sex differences in body fluid homeostasis: sex chromosome complement influences on bradycardic baroreflex response and sodium depletion induced neural activity. Physiol Behav. 2015;152:416–21.

    Article  CAS  PubMed  Google Scholar 

  • Wong PCY, Guo J, Zhang A. The renal and cardiovascular effects of natriuretic peptides. Adv Physiol Educ. 2017;41:179–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Souza Mecawi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ruginsk, S.G., Elias, L.L.K., Antunes-Rodrigues, J., Mecawi, A.S. (2022). Neuroendocrine Regulation of Hydrosaline Metabolism. In: Caprio, M., Fernandes-Rosa, F.L. (eds) Hydro Saline Metabolism. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-030-44628-4_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44628-4_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44628-4

  • Online ISBN: 978-3-030-44628-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics