Skip to main content

Approach to Fetal Anomalies

  • Living reference work entry
  • First Online:
Evidence-Based Imaging in Pediatrics

Part of the book series: Evidence-Based Imaging ((Evidence-Based Imag.))

  • 81 Accesses

Abstract

The overarching aim of prenatal diagnostic imaging is the timely identification of congenital anomalies to inform parents and guide clinical decision-making in terms of prognosis, fetal intervention, mode of delivery, or termination of pregnancy. This chapter discusses the timing, safety, and general informational gains of fetal US and MR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. ACOG Committee opinion no. 723: guidelines for diagnostic imaging during pregnancy and lactation. Obstet Gynecol. 2017;130:e210–6.

    Google Scholar 

  2. Reddy UM, Abuhamad AZ, Levine D, Saade GR. Fetal imaging: executive summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, American Institute of Ultrasound in Medicine, American College of Obstetricians and Gynecologists, American College of Radiology, Society for Pediatric Radiology, and Society of Radiologists in Ultrasound Fetal Imaging workshop. Obstet Gynecol. 2014;123:1070–82.

    Article  Google Scholar 

  3. Ziskin MC. Intrauterine effects of ultrasound: human epidemiology. Teratology. 1999;59:252–60.

    Google Scholar 

  4. Donald I, Macvicar J, Brown TG. Investigation of abdominal masses by pulsed ultrasound. Lancet. 1958;1:1188–95. Available from: https://doi.org/10.1016/s0140-6736(58)91905-6.

  5. Campbell S. A short history of sonography in obstetrics and gynaecology. Facts Views Vis Obgyn. 2013;5:213–29. Available from: pmcid: PMC3987368%0APMID: 24753947.

    Google Scholar 

  6. Edvardsson K, Lalos A, Åhman A, Small R, Graner S, Mogren I. Increasing possibilities – increasing dilemmas: a qualitative study of Swedish midwives’ experiences of ultrasound use in pregnancy. Midwifery. 2016;42:46–53. Available from: https://doi.org/10.1016/j.midw.2016.09.009.

  7. Fagerli TA, Mogren I, Adolfsson A, Edvardsson K, Åhman A, Holmlund S, et al. Midwives’ and obstetricians’ views on appropriate obstetric sonography in Norway. Sex Reprod Healthc. 2018;16:1–5. Available from: https://doi.org/10.1016/j.srhc.2017.12.006.

  8. Holmlund S, Lan PT, Edvardsson K, Phuc HD, Ntaganira J, Small R, et al. Health professionals’ experiences and views on obstetric ultrasound in Vietnam: a regional, cross-sectional study. BMJ Open. 2019;9:e031761. Available from: https://doi.org/10.1136/bmjopen-2019-031761.

  9. Salvesen K, Lees C, Abramowicz J, Brezinka C, Ter Haar G, Maršál K. ISUOG-WFUMB statement on the non-medical use of ultrasound, 2011. Ultrasound Obstet Gynecol. 2011;38:608. Available from: https://doi.org/10.1002/uog.10107.

  10. Garcia J, Bricker L, Henderson J, Martin MA, Mugford M, Nielson J, et al. Women’s views of pregnancy ultrasound: a systematic review. Birth. 2002;29:225–50. Available from: https://doi.org/10.1046/j.1523-536x.2002.00198.x.

  11. Wong AE, Collingham JP, Koszut SP, Grobman WA. Maternal factors associated with misperceptions of the second-trimester sonogram. Prenat Diagn. 2012 ;32:1029–34. Available from: https://doi.org/10.1002/pd.3950.

  12. Benson CB, Doubilet PM. The history of imaging in obstetrics. Radiology. 2014;273:S92–110. Available from: https://doi.org/10.1148/radiol.14140238.

  13. Ewigman BG, Crane JP, Frigoletto FD, LeFevre ML, Bain RP, McNellis D. Effect of prenatal ultrasound screening on perinatal outcome. RADIUS Study Group. N Engl J Med. 1993;329:821–7. Available from: https://doi.org/10.1056/NEJM199309163291201.

  14. Oakley GP. Frequency of human congenital malformations. Clin Perinatol. 1986;13:545–54. Available from: https://doi.org/10.1016/S0095-5108(18)30809-1.

  15. Grandjean H, Larroque D, Levi S. The performance of routine ultrasonographic screening of pregnancies in the Eurofetus Study. Am J Obstet Gynecol. 1999;181:446–54. Available from: https://doi.org/10.1016/S0002-9378(99)70577-6.

  16. Centers for Disease Control and Prevention. Update on overall prevalence of major birth defects – Atlanta, Georgia, 1978–2005. Morb Mortal Wkly Rep. 2008;57:1–5. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5701a2.htm

  17. Crane JP, LeFevre ML, Winborn RC, Evans JK, Ewigman BG, Bain RP, et al. A randomized trial of prenatal ultrasonographic screening: impact on the detection, management, and outcome of anomalous fetuses. Am J Obstet Gynecol. 1994;171:392–9. Available from: https://doi.org/10.1016/S0002-9378(94)70040-0.

  18. Whitworth M, Bricker L, Mullan C. Ultrasound for fetal assessment in early pregnancy. Cochrane Database Syst Rev. 2015;2015:CD007058. Available from: https://doi.org/10.1002/14651858.CD007058.pub3.

  19. Levi S. Ultrasound in prenatal diagnosis: polemics around routine ultrasound screening for second trimester fetal malformations. Prenat Diagn. 2002;22:285–95. Available from: https://doi.org/10.1002/pd.306.

  20. AIUM-ACR-ACOG-SMFM-SRU practice parameter for the performance of standard diagnostic obstetric ultrasound examinations. J Ultrasound Med. 2018;37:E13–24. Available from: https://doi.org/10.1002/jum.14831.

  21. Drukker L, Cavallaro A, Salim I, Ioannou C, Impey L, Papageorghiou AT. How often do we incidentally find a fetal abnormality at the routine third-trimester growth scan? A population-based study. Am J Obstet Gynecol. 2020;223:919.e1–e13. Available from: https://doi.org/10.1016/j.ajog.2020.05.052.

  22. LeFevre ML, Bain RP, Ewigman BG, Frigoletto FD, Crane JP, McNellis D. A randomized trial of prenatal ultrasonographic screening: impact on maternal management and outcome. RADIUS (Routine Antenatal Diagnostic Imaging with Ultrasound) Study Group. Am J Obs Gynecol. 1993;169:483–9. Available from: https://doi.org/10.1016/0002-9378(93)90605-i.

  23. Waitzman NJ, Romano PS. Reduced costs of congenital anomalies from fetal ultrasound: are they sufficient to justify routine screening in the United States? Ann N Y Acad Sci. 1998;847:141–53. Available from: https://doi.org/10.1111/j.1749-6632.1998.tb08935.x.

  24. Karim JN, Roberts NW, Salomon LJ, Papageorghiou AT. Systematic review of first-trimester ultrasound screening for detection of fetal structural anomalies and factors that affect screening performance. Ultrasound Obstet Gynecol. 2017;50:429–41. Available from: https://doi.org/10.1002/uog.17246.

  25. World Health Organization. WHO recommendations on antenatal care for a positive pregnancy experience: ultrasound examination. Geneva: World Health Organization; 2016. Available from: http://www.who.int/reproductivehealth/publications/anc-ultrasound-examination-brief/en/

  26. American College of Obstetricians and Gynecology. Practice Bulletin no. 175: ultrasound in pregnancy. Obstet Gynecol. 2016;128:e241–56. Available from: https://doi.org/10.1097/AOG.0000000000001815.

  27. American Institute of Ultrasound in Medicine. Official statement: prudent use and safety of diagnostic ultrasound in pregnancy. 2020. Available from: https://www.aium.org/officialStatements/79

  28. Phillips RA, Stratmeyer ME, Harris GR. Safety and U.S. regulatory considerations in the nonclinical use of medical ultrasound devices. Ultrasound Med Biol. 2010;36:1224–8. Available from: https://doi.org/10.1016/j.ultrasmedbio.2010.03.020.

  29. WFUMB/ISUOG. WFUMB/ISUOG statement on the safe use of Doppler ultrasound during 11–14 week scans (or earlier in pregnancy). Ultrasound Med Biol. 2013;39:373. Available from: https://doi.org/10.1016/j.ultrasmedbio.2012.11.025.

  30. Souka AP, Pilalis A, Papastefanou I, Eleftheriadis M, Papadopoulos G. Quality assessment of the detailed anomaly ultrasound scan. J Matern Neonatal Med. 2019;32:666–70. Available from: https://doi.org/10.1080/14767058.2017.1388366.

  31. Abinader R, Warsof SL. Benefits and pitfalls of ultrasound in obstetrics and gynecology. Obstet Gynecol Clin N Am. 2019;46:367–78. Available from: https://doi.org/10.1016/j.ogc.2019.01.011.

  32. Pinto NM, Nelson R, Puchalski M, Metz TD, Smith KJ. Cost-effectiveness of prenatal screening strategies for congenital heart disease. Ultrasound Obstet Gynecol. 2014;44:50–7. Available from: https://doi.org/10.1002/uog.13287.

  33. Dashe JS, McIntire DD, Twickler DM. Effect of maternal obesity on the ultrasound detection of anomalous fetuses. Obstet Gynecol. 2009;113:1001–7. Available from: https://doi.org/10.1016/S0029-7844(02)02013-6.

  34. Wax J, Minkoff H, Johnson A, Coleman B, Levine D, Helfgott A, et al. Consensus report on the detailed fetal anatomic ultrasound examination indications, components, and qualifications. J Ultrasound Med. 2014;33:189–95. Available from: https://pubmed.ncbi.nlm.nih.gov/24449720/

  35. Rasmussen SA, Chu SY, Kim SY, Schmid CH, Lau J. Maternal obesity and risk of neural tube defects: a metaanalysis. Am J Obstet Gynecol. 2008;198:611–9. Available from: https://pubmed.ncbi.nlm.nih.gov/18538144/

  36. Stothard KJ, Tennant PWG, Bell R, Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA. 2009;301:636–50. Available from: https://doi.org/10.1001/jama.2009.113.

  37. ACOG Committee on Practice Bulletins. ACOG practice bulletin no. 77: screening for fetal chromosomal abnormalities. Obstet Gynecol. 2007;109:217–28. Available from: https://pubmed.ncbi.nlm.nih.gov/17197615/

  38. Breathnach FM, Fleming A, Malone FD. The second trimester genetic sonogram. Am J Med Genet C Semin Med Genet. 2007;145C:62–72. Available from: https://pubmed.ncbi.nlm.nih.gov/17304556/

  39. De Domenico R, Faraci M, Hyseni E, Di Prima FAF, Valenti O, Monte S, et al. Increased nuchal traslucency in normal karyotype fetuses. J Prenat Med. 2011;5:23–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22439071

  40. Buca D, Liberati M, Calì G, Forlani F, Caisutti C, Flacco ME, et al. Influence of prenatal diagnosis of abnormally invasive placenta on maternal outcome: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;52:304–9. Available from: https://doi.org/10.1002/uog.19070.

  41. Norton ME, Jacobsson B, Swamy GK, Laurent LC, Ranzini AC, Brar H, et al. Cell-free DNA analysis for noninvasive examination of trisomy. N Engl J Med. 2015;372:1589–97. Available from: https://doi.org/10.1056/NEJMoa1407349.

  42. Zarzour S, Gabert H, Diket A, St Amant M, Miller JJ. Abnormal maternal serum alpha fetoprotein and pregnancy outcome. J Matern Fetal Med. 1998;7:304–7.

    CAS  Google Scholar 

  43. Cleary-Goldman J, Malone FD, Vidaver J, Ball RH, Nyberg DA, Comstock CH, et al. Impact of maternal age on obstetric outcome. Obstet Gynecol. 2005;105:983–90. Available from: https://doi.org/10.1097/01.AOG.0000158118.75532.51.

  44. Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366:1803–13. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1008095

  45. Heisey AS, Bell EM, Herdt-Losavio ML, Druschel C. Surveillance of congenital malformations in infants conceived through assisted reproductive technology or other fertility treatments. Birth Defects Res A Clin Mol Teratol. 2015;103:119–26. Available from: https://doi.org/10.1002/bdra.23355.

  46. Macintosh MCM, Fleming KM, Bailey JA, Doyle P, Modder J, Acolet D, et al. Perinatal mortality and congenital anomalies in babies of women with type 1 or type 2 diabetes in England, Wales, and Northern Ireland: population based study. Br Med J. 2006;333:177–80. Available from: https://doi.org/10.1136/bmj.38856.692986.AE.

  47. Knight KM, Pressman EK, Hackney DN, Thornburg LL. Perinatal outcomes in type 2 diabetic patients compared with non-diabetic patients matched by body mass index. J Matern Fetal Neonatal Med. 2012;25:611–5.

    Article  Google Scholar 

  48. David AL, Holloway A, Thomasson L, Syngelaki A, Nicolaides K, Patel RR, et al. A case-control study of maternal periconceptual and pregnancy recreational drug use and fetal malformation using hair analysis. PLoS One. 2014;9:e111038. Available from: https://doi.org/10.1371/journal.pone.0111038.

  49. Rasmussen SA, Erickson JD, Reef SE, Ross DS. Teratology: from science to birth defects prevention. Birth Defects Res A Clin Mol Teratol. 2009;85:82–92. Available from: https://pubmed.ncbi.nlm.nih.gov/19067401/

  50. Dashe JS, McIntire DD, Ramus RM, Santos-Ramos R, Twickler DM. Hydramnios: anomaly prevalence and sonographic detection. Obstet Gynecol. 2002;100:134–9. Available from: https://doi.org/10.1016/S0029-7844(02)02013-6.

  51. Oyelese Y. Placenta, umbilical cord and amniotic fluid: the not-less-important accessories. Clin Obstet Gynecol. 2012;55:307–23. Available from: https://pubmed.ncbi.nlm.nih.gov/22343247/

  52. Vink J, Wapner R, D’Alton ME. Prenatal diagnosis in twin gestations. Semin Perinatol. 2012;36:169–74. Available from: https://pubmed.ncbi.nlm.nih.gov/22713497/

  53. Committee on Practice Bulletins – Obstetrics; Society for Maternal–Fetal Medicine. Practice bulletin no. 169: multifetal gestations: twin, triplet, and higher-order multifetal pregnancies. Obstet Gynecol. 2016;128:e131–46. Available from: https://doi.org/10.1097/AOG.0000000000001709.

  54. Neu N, Duchon J, Zachariah P. TORCH infections. Clin Perinatol. 2015;42:77–103. Available from: https://doi.org/10.1016/j.clp.2014.11.001.

  55. Mari G, Norton ME, Stone J, Berghella V, Sciscione AC, Tate D, et al. Society for Maternal-Fetal Medicine (SMFM) clinical guideline #8: the fetus at risk for anemia-diagnosis and management. Am J Obstet Gynecol. 2015;212:697–710. Available from: https://doi.org/10.1016/j.ajog.2015.01.059.

  56. Dukler D, Oepkes D, Seaward G, Windrim R, Ryan G. Noninvasive tests to predict fetal anemia: a study comparing Doppler and ultrasound parameters. Am J Obstet Gynecol. 2003;188:1310–4. Available from: https://pubmed.ncbi.nlm.nih.gov/12748504/

  57. Ang ESBC, Gluncic V, Duque A, Schafer ME, Rakic P. Prenatal exposure to ultrasound waves impacts neuronal migration in mice. Proc Natl Acad Sci U S A. 2006;103:12903–10. Available from: https://doi.org/10.1073/pnas.0605294103.

  58. Hande MP, Devi PU. Teratogenic effects of repeated exposures to X-rays and/or ultrasound in mice. Neurotoxicol Teratol. 1995;17:179–88. Available from: https://doi.org/10.1016/0892-0362(94)00069-p.

  59. Carnes KI, Hess RA, Dunn F. The effect of ultrasound exposure in utero on the development of the fetal mouse testis: adult consequences. Ultrasound Med Biol. 1995;21:1247–57. Available from: https://doi.org/10.1095/biolreprod45.3.432.

  60. McClintic AM, King BH, Webb SJ, Mourad PD. Mice exposed to diagnostic ultrasound in utero are less social and more active in social situations relative to controls. Autism Res. 2014;7:295–304. Available from: https://doi.org/10.1002/aur.1349.

  61. Schneider-Kolsky ME, Ayobi Z, Lombardo P, Brown D, Kedang B, Gibbs ME. Ultrasound exposure of the foetal chick brain: effects on learning and memory. Int J Dev Neurosci. 2009;27:677–83. Available from: https://doi.org/10.1016/j.ijdevneu.2009.07.007.

  62. Tarantal AF, Hendrickx AG. Evaluation of the bioeffects of prenatal ultrasound exposure in the cynomolgus macaque (Macaca fascicularis): I. Neonatal/infant observations. Teratology. 1989;39:137–47. Available from: https://doi.org/10.1002/tera.1420390206.

  63. Tarantal AF, O’Brien WD, Hendrickx AG. Evaluation of the bioeffects of prenatal ultrasound exposure in the cynomolgus macaque (Macaca fascicularis): III. Developmental and hematologic studies. Teratology. 1993;47:159–70. Available from: https://doi.org/10.1002/tera.1420470208.

  64. Ahmad Zaiki FW, Md Dom S, Abdul Razak HR, Hassan HF. Prenatal ultrasound heating impacts on fluctuations in haematological analysis of Oryctolagus cuniculus. Quant Imaging Med Surg. 2013;3:262–8. Available from: https://doi.org/10.3978/j.issn.2223-4292.2013.10.05.

  65. Ramnarine K V, Nassiri DK, McCarthy A, Brown NA. Effects of pulsed ultrasound on embryonic development: an in vitro study. Ultrasound Med Biol. 1998;24:575–85. Available from: https://doi.org/10.1016/s0301-5629(98)00007-6.

  66. Pellicer B, Herraiz S, Táboas E, Felipo V, Simon C, Pellicer A. Ultrasound bioeffects in rats: quantification of cellular damage in the fetal liver after pulsed Doppler imaging. Ultrasound Obstet Gynecol. 2011;37:643–8. Available from: https://doi.org/10.1002/uog.8842.

  67. Doody C, Porter H, Duck FA, Humphrey VF. In vitro heating of human fetal vertebra by pulsed diagnostic ultrasound. Ultrasound Med Biol. 1999;25:1289–94. Available from: https://doi.org/10.1016/S0301-5629(99)00071-X.

  68. Chambers CD, Johnson KA, Dick LM, Felix RJ, Jones KL. Maternal fever and birth outcome: a prospective study. Teratology. 1998;58:251–7. Available from: https://doi.org/10.1002/(SICI)1096-9926(199812)58:6%3C251::AID-TERA6%3E3.0.CO;2-L.

  69. Edwards MJ. Apoptosis, the heat shock response, hyperthermia, with defects, disease and cancer. Where are the common links?. Cell Stress Chaperones. 1998;3:213–20. Available from: https://doi.org/10.1379/1466-1268(1998)003%3C0213:ATHSRH%3E2.3.CO;2.

  70. Edwards MJ. Review: hyperthermia and fever during pregnancy. Birth Defects Res A Clin Mol Teratol. 2006;76:507–16. Available from: http://doi.wiley.com/10.1002/bdra.20277

  71. Nelson TR, Fowlkes JB, Abramowicz JS, Church CC. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J. Ultrasound Med. 2009;28:139–50. Available from: https://doi.org/10.7863/jum.2009.28.2.139.

  72. Church CC, Miller MW. Quantification of risk from fetal exposure to diagnostic ultrasound. Prog Biophys Mol Biol. 2007;93:331–53. Available from: https://doi.org/10.1016/j.pbiomolbio.2006.07.015.

  73. Duck FA. Hazards, risks and safety of diagnostic ultrasound. Med Eng Phys. 2008;30:1338–48. Available from: https://doi.org/10.1016/j.medengphy.2008.06.002.

  74. Abramowicz JS. Benefits and risks of ultrasound in pregnancy. Semin Perinatol. 2013;37:295–300. Available from: https://doi.org/10.1053/j.semperi.2013.06.004.

  75. American Institute of Ultrasound in Medicine Official Statements. Official statement: Statement on Biological Effects of Ultrasound in Vivo. Approved August 19, 2021. Available from: https://www.aium.org/officialStatements/82?__sw_csrfToken=304eac07

  76. Jensh RP, Brent RL. Intrauterine effects of ultrasound: animal studies. Teratology. 1999;59:240–51. Available from: https://doi.org/10.1002/(SICI)1096-9926(199904)59:4%3C240::AID-TERA10%3E3.0.CO;2-V.

  77. Salvesen KA, Vatten LJ, Eik-Nes SH, Hugdahl K, Bekketeig LS. Routine ultrasonography in utero and subsequent handedness and neurological development. Br Med J. 1993;307:159–64. Available from: https://doi.org/10.1136/bmj.307.6897.159.

  78. Kieler H, Axelsson O, Haglund B, Nilsson S, Salvesen KÅ. Routine ultrasound screening in pregnancy and the children’s subsequent handedness. Early Hum Dev. 1998;50:233–45. Available from: https://doi.org/10.1016/S0378-3782(97)00097-2.

  79. Heikkilä K, Vuoksimaa E, Oksava K, Saari-Kemppainen A, Iivanainen M. Handedness in the Helsinki ultrasound trial. Ultrasound Obstet Gynecol. 2011;37:638–42. Available from: http://doi.wiley.com/10.1002/uog.8962

  80. Salvesen KÅ, Eik-Nes SH. Ultrasound during pregnancy and subsequent childhood non-right handedness: a meta-analysis. Ultrasound Obstet Gynecol. 1999;13:241–6. Available from: https://doi.org/10.1046/j.1469-0705.1999.13040241.x.

  81. Kinnier Wilson LM, Waterhouse JA. Obstetric ultrasound and childhood malignancies. Lancet. 1984;2:997–9. Available from: https://doi.org/10.1016/s0140-6736(84)91104-8.

  82. Cartwright RA, Mckinney PA, Hopton PA, Birch JM, Hartley AL, Mann JR, et al. Ultrasound examinations in pregnancy and childhood cancer. Lancet. 1984;324:999–1000. Available from: https://doi.org/10.1016/S0140-6736(84)91105-X.

  83. Shu X, Jin F, Linet M, Zheng W, Clemens J, Mills J, et al. Diagnostic X-ray and ultrasound exposure and risk of childhood cancer. Br J Cancer. 1994;70:531–6. Available from: https://doi.org/10.1038/bjc.1994.340.

  84. Sorahan T, Lancashire R, Stewart A, Peck I. Pregnancy ultrasound and childhood cancer: a second report from the Oxford Survey of Childhood Cancers. BJOG. 1995;102:831–2. Available from: http://doi.wiley.com/10.1111/j.1471-0528.1995.tb10851.x

  85. Naumburg E, Bellocco R, Cnattingius S, Hall P, Ekborn A. Prenatal ultrasound examinations and risk of childhood leukaemia: case-control study. Br Med J. 2000;320:282–3. Available from: https://doi.org/10.1136/bmj.320.7230.282.

  86. Stålberg K, Haglund B, Axelsson O, Cnattingius S, Pfeifer S, Kieler H. Prenatal ultrasound and the risk of childhood brain tumour and its subtypes. Br J Cancer. 2008;98:1285–7. Available from: https://doi.org/10.1038/sj.bjc.6604284.

  87. Joy J, Cooke I, Love M. Is ultrasound safe? Obstet Gynaecol. 2006;8:222–7. Available from: http://doi.wiley.com/10.1576/toag.8.4.222.27271

  88. Lee W, Kirk JS, Shaheen KW, Romero R, Hodges AN, Comstock CH. Fetal cleft lip and palate detection by three-dimensional ultrasonography. Ultrasound Obstet Gynecol. 2000;16:314–20. Available from: https://doi.org/10.1046/j.1469-0705.2000.00181.x.

  89. Yinon Y, Katorza E, Nassie DI, Ben-Meir E, Gindes L, Hoffmann C, et al. Late diagnosis of fetal central nervous system anomalies following a normal second trimester anatomy scan. Prenat Diagn. 2013;33:929–34. Available from: https://doi.org/10.1002/pd.4163.

  90. Ficara A, Syngelaki A, Hammami A, Akolekar R, Nicolaides KH. Value of routine ultrasound examination at 35–37 weeks’ gestation in diagnosis of fetal abnormalities. Ultrasound Obstet Gynecol. 2020;55:75–80. Available from: https://doi.org/10.1002/uog.20857.

  91. Henrichs J, Verfaille V, Jellema P, Viester L, Pajkrt E, Wilschut J, et al. Effectiveness of routine third trimester ultrasonography to reduce adverse perinatal outcomes in low risk pregnancy (the IRIS study): nationwide, pragmatic, multicentre, stepped wedge cluster randomised trial. BMJ. 2019;367:5517. Available from: https://pubmed.ncbi.nlm.nih.gov/31615781/

  92. Timor-Tritsch IE, Fuchs KM, Monteagudo A, D’Alton ME. Performing a fetal anatomy scan at the time of first-trimester screening. Obstet Gynecol. 2009;113:402–7. Available from: https://doi.org/10.1097/AOG.0b013e3181954b23.

  93. Levine D. Timing of MRI in pregnancy, repeat exams, access, and physician qualifications. Semin Perinatol. 2013;37:340–4. Available from: https://doi.org/10.1053/j.semperi.2013.06.011.

  94. Halabi SS, Epelman M, Pruthi S, Barth RA, Bulas DI, Guimaraes CV, et al. ACR-SPR Practice Parameter for the safe and optimal performance of fetal MRI. Am Coll Radiol. 2010;Rev 2020. Available from: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-Fetal.pdf

  95. Wataganara T, Ebrashy A, Aliyu LD, Moreira De Sa RA, Pooh R, Kurjak A, et al. Fetal magnetic resonance imaging and ultrasound. J Perinat Med. 2016;44:533–42. Available from: https://doi.org/10.1515/jpm-2015-0226.

  96. Simon EM, Goldstein RB, Coakley F V, Filly RA, Broderick KC, Musci TJ, et al. Fast MR imaging of fetal CNS anomalies in utero. AJNR Am J Neuroradiol. 2000;21:1688–98. Available from: pmid: 11039352.

    Google Scholar 

  97. Kline-Fath B, Bitters C. Prenatal imaging. Newborn Infant Nurs Rev. 2007;7:197–204. Available from: https://doi.org/10.1053/j.nainr.2007.09.002.

  98. Bulas D. Fetal magnetic resonance imaging as a complement to fetal ultrasonography. Ultrasound Q. 2007;23:3–22. Available from: https://doi.org/10.1097/01.ruq.0000263841.69689.a7.

  99. Victoria T, Johnson AM, Christopher Edgar J, Zarnow DM, Vossough A, Jaramillo D. Comparison between 1.5-T and 3-T MRI for fetal imaging: is there an advantage to imaging with a higher field strength? Am J Roentgenol. 2016;206:195–201. Available from: https://doi.org/10.2214/AJR.14.14205.

  100. Kanal E, Gillen J, Evans JA, Savitz DA, Shellock FG. Survey of reproductive health among female MR workers. Radiology. 1993;187:395–9. Available from: https://doi.org/10.1148/radiology.187.2.8475280.

  101. Ciet P, Litmanovich DE. MR safety issues particular to women. Magn Reson Imaging Clin N Am. 2015;23:59–67. Available from: https://doi.org/10.1016/j.mric.2014.09.002.

  102. Ray JG, Vermeulen MJ, Bharatha A, Montanera WJ, Park AL. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016;316:952. Available from: https://doi.org/10.1001/jama.2016.12126.

  103. Schenck JF. Safety of strong, static magnetic fields. J Magn Reson Imaging. 2000;12:2–19. Available from: https://doi.org/10.1002/1522-2586(200007)12:1%3C2::AID-JMRI2%3E3.0.CO;2-V.

  104. Chartier AL, Bouvier MJ, McPherson DR, Stepenosky JE, Taysom DA, Marks RM. The safety of maternal and fetal MRI at 3 T. Am J Roentgenol. 2019;213:1170–3. Available from: https://doi.org/10.1259/bjr.73.866.10884733.

  105. Patenaude Y, Pugash D, Lim K, Morin L, Bly S, Butt K, et al. The use of magnetic resonance imaging in the obstetric patient. J Obstet Gynaecol Canada. 2014;36:349–55. Available from: https://doi.org/10.1016/S1701-2163(15)30612-5.

  106. Baker PN, Johnson IR, Harvey PR, Gowland PA, Mansfield P. A three-year follow-up of children imaged in utero with echo-planar magnetic resonance. Am J Obstet Gynecol. 1994;170:32–3. Available from: https://doi.org/10.1016/S0002-9378(94)70379-5.

  107. Glover P, Hykin J, Gowland P, Wright J, Johnson I, Mansfield P. An assessment of the intrauterine sound intensity level during obstetric echo-planar magnetic resonance imaging. Br J Radiol. 1995;68:1090–4. Available from: https://doi.org/10.1259/0007-1285-68-814-1090.

  108. Myers C, Duncan KR, Gowland PA, Johnson IR, Baker PN. Failure to detect intrauterine growth restriction following in utero exposure to MRI. Br J Radiol. 1998;71:549–51. Available from: https://doi.org/10.1259/bjr.71.845.9691901.

  109. Clements H, Duncan KR, Fielding K, Gowland PA, Johnson IR, Baker PN. Infants exposed to MRI in utero have a normal paediatric assessment at 9 months of age. Br J Radiol. 2000;73:190–4. Available from: https://doi.org/10.1259/bjr.73.866.10884733.

  110. Chew S, Ahmadi A, Goh PS, Foong LC. The effects of 1.5T magnetic resonance imaging on early murine in-vitro embryo development. J Magn Reson Imaging. 2001;13:417–20. Available from: https://doi.org/10.1002/jmri.1060.

  111. Levine D, Zuo C, Faro CB, Chen Q. Potential heating effect in the gravid uterus during MR HASTE imaging. J Magn Reson Imaging. 2001;13:856–61. Available from: https://doi.org/10.1002/jmri.1122.

  112. Kok RD, de Vries MM, Heerschap A, van den Berg PP. Absence of harmful effects of magnetic resonance exposure at 1.5 T in utero during the third trimester of pregnancy: a follow-up study. Magn Reson Imaging. 2004;22:851–4. Available from: https://doi.org/10.1016/j.mri.2004.01.047.

  113. Bulas D, Egloff A. Benefits and risks of MRI in pregnancy. Semin Perinatol. 2013;37:301–4. Available from: https://doi.org/10.1053/j.semperi.2013.06.005.

  114. International Commission on Non-ionizing Radiation Protection. ICNIRP statement on medical magnetic resonance (MR) procedures: protection of patients. Health Phys. 2004;87:197–216. Available from: https://www.icnirp.org/cms/upload/publications/ICNIRPMR2004.pdf

  115. International Electrotechnical Commission. Medical electrical equipment – part 2–33: particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis. Geneva; 2015. Available from: http://mriquestions.com/uploads/3/4/5/7/34572113/safety_iec_60601-2-33previews_1897819_pre.pdf

  116. Grainger D. Safety guidelines for magnetic resonance imaging equipment in clinical use. London; 2015. Available from: http://www.ismrm.org/smrt/files/con2033065.pdf

  117. Murbach M, Neufeld E, Samaras T, Córcoles J, Robb FJ, Kainz W, et al. Pregnant women models analyzed for RF exposure and temperature increase in 3T RF shimmed birdcages. Magn Reson Med. 2017;77:2048–56. Available from: https://doi.org/10.1002/mrm.26268.

  118. Greenberg TD, Hoff MN, Gilk TB, Jackson EF, Kanal E, McKinney AM, et al. ACR guidance document on MR safe practices: updates and critical information 2019. J Magn Reson Imaging. 2020;51:331–8. Available from: https://doi.org/10.1002/jmri.26880.

  119. Hand JW, Li Y, Hajnal JV. Numerical study of RF exposure and the resulting temperature rise in the foetus during a magnetic resonance procedure. Phys Med Biol. 2010;55:913–30. Available from: https://doi.org/10.1088/0031-9155/55/4/001.

  120. Bouyssi-Kobar M, du Plessis AJ, Robertson RL, Limperopoulos C. Fetal magnetic resonance imaging: exposure times and functional outcomes at preschool age. Pediatr Radiol. 2015;45:1823–30. Available from: https://doi.org/10.1007/s00247-015-3408-7.

  121. Jaimes C, Delgado J, Cunnane MB, Hedrick HL, Adzick NS, Gee MS, et al. Does 3-T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetuses scanned at 1.5 and 3 T. Pediatr Radiol. 2019;49:37–45. Available from: https://doi.org/10.1007/s00247-018-4261-2.

  122. Oh KY, Roberts VHJ, Schabel MC, Grove KL, Woods M, Frias AE. Gadolinium chelate contrast material in pregnancy: fetal biodistribution in the nonhuman primate. Radiology. 2015;276:110–8. Available from: https://doi.org/10.1148/radiol.15141488.

  123. Novak Z, Thurmond AS, Ross PL, Jones MK, Thornburg KL, Katzberg RW. Gadolinium-DTPA transplacental transfer and distribution in fetal tissue in rabbits. Invest Radiol. 1993;28:828–30. Available from: pmid: 8225889.

    Google Scholar 

  124. Panigel M, Wolf G, Zeleznick A. Magnetic resonance imaging of the placenta in rhesus monkeys, Macaca mulatta. J Med Primatol. 1988;17:3–18. Available from: https://doi.org/10.1111/j.1600-0684.1988.tb00355.x.

  125. Prola-Netto J, Woods M, Roberts VHJ, Sullivan EL, Miller CA, Frias AE, et al. Gadolinium chelate safety in pregnancy. Radiology. 2017;286:122–8. Available from: https://doi.org/10.1148/radiol.2017162534.

  126. Mühler MR, Clément O, Salomon LJ, Balvay D, Autret G, Vayssettes C, et al. Maternofetal pharmacokinetics of a gadolinium chelate contrast agent in mice. Radiology. 2011;258:455–60. Available from: https://doi.org/10.1148/radiol.10100652.

  127. American College of Radiology Committee on Drugs and Contrast. ACR manual on contrast media. ACR. 2020. Available from: https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf

  128. United States Food and Drug Administration. Information on gadolinium-based contrast agents. 2020. Available from: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/information-gadolinium-based-contrast-agents

  129. Webb JAW, Thomsen HS, Morcos SK, Almén T, Aspelin P, Bellin MF, et al. The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol. 2005;15:1234–40. Available from: https://doi.org/10.1007/s00330-004-2583-y.

  130. Mervak BM, Altun E, McGinty KA, Hyslop WB, Semelka RC, Burke LM. MRI in pregnancy: indications and practical considerations. J Magn Reson Imaging. 2019;49:621–31. Available from: https://doi.org/10.1002/jmri.26317.

  131. Kline-Fath BM, Calvo-Garcia MA. Prenatal imaging of congenital malformations of the brain. Semin Ultrasound CT MR. 2011;32:167–88. Available from: https://doi.org/10.1053/j.sult.2011.02.010.

  132. Glenn OA, Barkovich J. Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis: part 2. Am J Neuroradiol. 2006;27:1807–14.

    CAS  Google Scholar 

  133. Verburg B, Fink AM, Reidy K, Palma-Dias R. The contribution of MRI after fetal anomalies have been diagnosed by ultrasound: correlation with postnatal outcomes. Fetal Diagn Ther. 2015;38:186–94. Available from: https://doi.org/10.1159/000380821.

  134. Gonçalves LF, Lee W, Mody S, Shetty A, Sangi-Haghpeykar H, Romero R. Diagnostic accuracy of ultrasonography and magnetic resonance imaging for the detection of fetal anomalies: a blinded case-control study. Ultrasound Obstet Gynecol. 2016;48:185–92. Available from: https://doi.org/10.1002/uog.15774.

  135. Valevičienė NR, Varytė G, Zakarevičienė J, Kontrimavičiūtė E, Ramašauskaitė D, Rutkauskaitė-Valančienė D. Use of magnetic resonance imaging in evaluating fetal brain and abdomen malformations during pregnancy. Medicina. 2019;55:55. Available from: https://doi.org/10.3390/medicina55020055.

  136. Manganaro L, Bernardo S, Antonelli A, Vinci V, Saldari M, Catalano C. Fetal MRI of the central nervous system: state-of-the-art. Eur J Radiol. 2017;93:273–83.

    Article  Google Scholar 

  137. Plunk MR, Chapman T. The fundamentals of fetal MR imaging: part 1. Curr Probl Diagn Radiol. 2014;43:331–46. Available from: https://doi.org/10.1067/j.cpradiol.2014.05.014.

  138. Prayer D, Kasprian G, Krampl E, Ulm B, Witzani L, Prayer L, et al. MRI of normal fetal brain development. Eur J Radiol. 2006;57:199–216. Available from: https://doi.org/10.1016/j.ejrad.2005.11.020.

  139. Triulzi F, Manganaro L, Volpe P. Fetal magnetic resonance imaging: indications, study protocols and safety (Risonanza magnetica fetale. Indicazioni, protocolli di studio e sicurezza). Radiol Med. 2011;116:337–50. Available from: https://doi.org/10.1007/s11547-011-0633-5.

  140. Dovjak GO, Brugger PC, Gruber GM, Song JW, Weber M, Langs G, et al. Prenatal assessment of cerebellar vermian lobulation: fetal MRI with 3-Tesla postmortem validation. Ultrasound Obstet Gynecol. 2018;52:623–30. Available from: https://doi.org/10.1002/uog.18826.

  141. Limperopoulos C, Robertson RL, Khwaja OS, Robson CD, Estroff JA, Barnewolt C, et al. How accurately does current fetal imaging identify posterior fossa anomalies? AJR Am J Roentgenol. 2008;190:1637–43. https://doi.org/10.2214/AJR.07.3036.

    Article  Google Scholar 

  142. Weisstanner C, Kasprian G, Gruber GM, Brugger PC, Prayer D. MRI of the fetal brain. Clin Neuroradiol. 2015;25:189–96. Available from: https://doi.org/10.1007/s00062-015-0413-z.

  143. Nagaraj UD, Bierbrauer KS, Stevenson CB, Peiro JL, Lim FY, Zhang B, et al. Spinal imaging findings of open spinal dysraphisms on fetal and postnatal MRI. Am J Neuroradiol. 2018;39:1947–52. Available from: https://doi.org/10.3174/ajnr.A5760.

  144. Morais BA, Solla DJF, Yamaki VN, Ferraciolli SF, Alves CAPF, Cardeal DD, et al. Brain abnormalities in myelomeningocele patients. Childs Nerv Syst. 2020;36:1507–13. Available from: https://doi.org/10.1007/s00381-019-04386-8.

  145. Mirsky DM, Schwartz ES, Zarnow DM. Diagnostic features of myelomeningocele: the role of ultrafast fetal MRI. Fetal Diagn Ther. 2015;37:219–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25059405

  146. Sherrod BA, Ho WS, Hedlund A, Kennedy A, Ostrander B, Bollo RJ. A comparison of the accuracy of fetal MRI and prenatal ultrasonography at predicting lesion level and perinatal motor outcome in patients with myelomeningocele. Neurosurg Focus. 2019;47:E4. Available from: https://thejns.org/doi/abs/10.3171/2019.7.FOCUS19450

  147. Lazar DA, Cassady CI, Olutoye OO, Moise KJ, Johnson A, Lee TC, et al. Tracheoesophageal displacement index and predictors of airway obstruction for fetuses with neck masses. J Pediatr Surg. 2012;47:46–50. Available from: https://doi.org/10.1016/j.jpedsurg.2011.10.022.

  148. Rahbar R, Vogel A, Myers LB, Bulich LA, Wilkins-Haug L, Benson CB, et al. Fetal surgery in otolaryngology: a new era in the diagnosis and management of fetal airway obstruction because of advances in prenatal imaging. Arch Otolaryngol Head Neck Surg. 2005;131:393–8. Available from: https://doi.org/10.1001/archotol.131.5.393.

  149. Jiang S, Yang C, Bent J, Yang CJ, Gangar M, Nassar M, et al. Ex utero intrapartum treatment (EXIT) for fetal neck masses: a tertiary center experience and literature review. Int J Pediatr Otorhinolaryngol. 2019;127:109642. Available from: https://doi.org/10.1016/j.ijporl.2019.109642.

  150. Zamora IJ, Sheikh F, Cassady CI, Olutoye OO, Mehollin-Ray AR, Ruano R, et al. Fetal MRI lung volumes are predictive of perinatal outcomes in fetuses with congenital lung masses. J Pediatr Surg. 2014;49:853–8. Available from: https://doi.org/10.1016/j.jpedsurg.2014.01.012.

  151. Cannie MM, Jani JC, De Keyzer F, Allegaert K, Dymarkowski S, Deprest J. Evidence and patterns in lung response after fetal tracheal occlusion: clinical controlled study. Radiology. 2009;252:526–33. Available from: https://doi.org/10.1148/radiol.2522081955.

  152. Avni FE, Guibaud L, Robert Y, Segers V, Ziereisen F, Delaet MH, et al. MR imaging of fetal sacrococcygeal teratoma: diagnosis and assessment. Am J Roentgenol. 2002;178:179–83. Available from: https://doi.org/10.2214/ajr.178.1.1780179.

  153. Partridge EA, Canning D, Long C, Peranteau WH, Hedrick HL, Adzick NS, et al. Urologic and anorectal complications of sacrococcygeal teratomas: prenatal and postnatal predictors. J Pediatr Surg. 2014;49:139–43. Available from: https://doi.org/10.1016/j.jpedsurg.2013.09.042.

  154. Quinn TM, Hubbard AM, Adzick NS. Prenatal magnetic resonance imaging enhances fetal diagnosis. J Pediatr Surg. 1998;33:553–8. Available from: https://doi.org/10.1016/S0022-3468(98)90315-3.

  155. Spruijt MS, Lopriore E, Steggerda SJ, Slaghekke F, Van Klink JMM. Twin-twin transfusion syndrome in the era of fetoscopic laser surgery: antenatal management, neonatal outcome and beyond. Expert Rev Hematol. 2020;13:259–67. Available from: https://doi.org/10.1080/17474086.2020.1720643.

  156. Hoffman C, Weisz B, Hogen L, Gindes L, Shrim A, Sivan E, et al. Diffusion MRI findings in monochorionic twin pregnancies after intrauterine fetal death. Am J Neuroradiol. 2013;212–6. Available from: https://doi.org/10.1016/j.yobg.2013.05.105.

  157. Kline-Fath BM, Calvo-Garcia MA, O’Hara SM, Crombleholme TM, Racadio JM. Twin-twin transfusion syndrome: cerebral ischemia is not the only fetal MR imaging finding. Pediatr Radiol. 2007;37:47–56. Available from: https://doi.org/10.1007/s00247-006-0337-5.

  158. Jelin AC, Norton ME, Bartha AI, Fick AL, Glenn OA. Intracranial magnetic resonance imaging findings in the surviving fetus after spontaneous monochorionic cotwin demise. Am J Obstet Gynecol. 2008;199:398.e1–e5. Available from: https://doi.org/10.1016/j.ajog.2008.06.062.

  159. Ascherl R, Sorge I, Thome U, Hirsch FW, Bläser A, Kiess W, et al. Severe gyration and migration disorder in fetofetal transfusion syndrome: two case reports and a review of the literature on the neurological outcome of children with lesions on neuroimaging. Childs Nerv Syst. 2018;34:155–63. Available from: https://doi.org/10.1007/s00381-017-3595-7.

  160. Robinson A, Teoh M, Edwards A, Fahey M, Goergen S. Fetal brain injury in complicated monochorionic pregnancies: diagnostic yield of prenatal MRI following surveillance ultrasound and influence on prognostic counselling. Prenat Diagn. 2017;37:611–27. Available from: https://doi.org/10.1002/pd.5059.

  161. Griffiths PD, Sharrack S, Chan KL, Bamfo J, Williams F, Kilby MD. Fetal brain injury in survivors of twin pregnancies complicated by demise of one twin as assessed by in utero MR imaging. Prenat Diagn. 2015;35:583–91. Available from: https://doi.org/10.1002/pd.4577.

  162. Glanc P, Nyberg DA, Khati NJ, Deshmukh SP, Dudiak KM, Henrichsen TL, et al. ACR Appropriateness Criteria® multiple gestations. J Am Coll Radiol. 2017;14:S476–89. Available from: https://doi.org/10.1016/j.jacr.2017.08.051.

  163. Hu LS, Caire J, Twickler DM. MR findings of complicated multifetal gestations. Pediatr Radiol. 2006;36:76–81. Available from: https://doi.org/10.1007/s00247-005-0021-1.

  164. Zoppini C, Vanzulli A, Kustermann A, Rizzuti T, Selicorni A, Nicolini U. Prenatal diagnosis of anatomical connections in conjoined twins by use of contrast magnetic resonance imaging. Prenat Diagn. 1993;13:995–9. Available from: https://doi.org/10.1002/pd.1970131015.

  165. Denegre JM, Valles JM, Lin K, Jordan WB, Mowry KL. Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci U S A. 1998;95:14729–32. Available from: https://doi.org/10.1073/pnas.95.25.14729.

  166. Sadri M, Abdolmaleki P, Abrun S, Beiki B, Samani FS. Static magnetic field effect on cell alignment, growth, and differentiation in human cord-derived mesenchymal stem cells. Cell Mol Bioeng. 2017;10:249–62. Available from: https://doi.org/10.1007/s12195-017-0482-y.

  167. Wiskirchen J, Groenewaeller EF, Kehlbach R, Heinzelmann F, Wittau M, Rodemann HP, et al. Long-term effects of repetitive exposure to a static magnetic field (1.5 T) on proliferation of human fetal lung fibroblasts. Magn Reson Med. 1999;41:464–8. Available from: https://doi.org/10.1002/(SICI)1522-2594(199903)41:3%3C464::AID-MRM6%3E3.0.CO;2-R.

  168. Supino R, Bottone MG, Pellicciari C, Caserini C, Bottiroli G, Belleri M, et al. Sinusoidal 50 Hz magnetic fields do not affect structural morphology and proliferation of human cells in vitro. Histol Histopathol. 2001;16:719–26. Available from: https://doi.org/10.14670/HH-16.719.

  169. Narra VR, Howell RW, Goddu SM, Rao D V. Effects of a 1.5-Tesla static magnetic field on spermatogenesis and embryogenesis in mice. Invest Radiol. 1996;31:586–90. Available from: https://doi.org/10.1097/00004424-199609000-00007.

  170. Carnes KI, Magin RL. Effects of in utero exposure to 4.7 T MR imaging conditions on fetal growth and testicular development in the mouse. Magn Reson Imaging. 1996;14:263–74. Available from: https://doi.org/10.1095/biolreprod45.3.432.

  171. Tyndall DA. MRI effects on craniofacial size and crown-rump length in C57BL 6J mice in 1.5T fields. Oral Surg Oral Med Oral Pathol. 1993;76:655–60. Available from: https://doi.org/10.1016/0030-4220(93)90077-H.

  172. Heinrichs WLR, Fong P, Flannery M, Heinrichs SC, Crooks LE, Spindle A, et al. Midgestational exposure of pregnant BALB c mice to magnetic resonance imaging conditions. Magn Reson Imaging. 1988;6:305–13. Available from: https://doi.org/10.1016/0730-725X(88)90407-9.

  173. Tyndall DA, Sulik KK. Effects of magnetic resonance imaging on eye development in the C57BL/6J mouse. Teratology. 1991;43:263–75. Available from: https://doi.org/10.1002/tera.1420430310.

  174. Saito K, Suzuki H, Suzuki K. Teratogenic effects of static magnetic field on mouse fetuses. Reprod Toxicol. 2006;22:118–24. Available from: https://doi.org/10.1016/j.reprotox.2005.08.003.

  175. Mevissen M, Buntenkötter S, Löscher W. Effects of static and time-varying (50-Hz) magnetic fields on reproduction and fetal development in rats. Teratology. 1994;50:229–37. Available from: https://doi.org/10.1002/tera.1420500308.

  176. Yip YP, Capriotti C, Talagala SL, Yip JW. Effects of MR exposure at 1.5 T on early embryonic development of the chick. J Magn Reson Imaging. 1994;4:742–8. Available from: https://doi.org/10.1002/jmri.1880040518.

  177. High WB, Sikora J, Ugurbil K, Garwood M. Subchronic in vivo effects of a high static magnetic field (9.4 T) in rats. J Magn Reson Imaging. 2000;12:122–39. Available from: https://doi.org/10.1002/1522-2586(200007)12:1%3C122::aid-jmri14%3E3.0.co;2-c.

  178. Hoyer C, Vogt MA, Richter SH, Zaun G, Zahedi Y, Maderwald S, et al. Repetitive exposure to a 7 Tesla static magnetic field of mice in utero does not cause alterations in basal emotional and cognitive behavior in adulthood. Reprod Toxicol. 2012;34:86–92. Available from: https://doi.org/10.1016/j.reprotox.2012.03.006.

  179. Murakami J, Torii Y, Masuda K. Fetal development of mice following intrauterine exposure to a static magnetic field of 6.3 T. Magn Reson Imaging. 1992;10:433–7. Available from: https://doi.org/10.1016/0730-725x(92)90514-z.

  180. Zhu C, Gao J, Li Q, Huang Z, Zhang Y, Li H, et al. Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function. Biochem Biophys Res Commun. 2011;404:291–6. Available from: https://doi.org/10.1016/j.bbrc.2010.11.109.

  181. Uygur E, Arslan M. Effects of chronic stress on cognitive functions and anxiety related behaviors in rats. Acta Physiol Hung. 2010;97:297–306. Available from: https://doi.org/10.1556/APhysiol.97.2010.3.6.

  182. Nishio H, Kasuga S, Ushijima M, Harada Y. Prenatal stress and postnatal development of neonatal rats – sex-dependent effects on emotional behavior and learning ability of neonatal rats. Int J Dev Neurosci. 2001;19:37–45. Available from: https://doi.org/10.1016/S0736-5748(00)00070-8.

  183. Kay G, Tarcic N, Poltyrev T, Weinstock M. Prenatal stress depresses immune function in rats. Physiol Behav. 1998;63:397–402. Available from: https://doi.org/10.1016/S0031-9384(97)00456-3.

  184. Magin RL, Lee JK, Klintsova A, Carnes KI, Dunn F. Biological effects of long-duration, high-field (4 T) MRI on growth and development in the mouse. J Magn Reson Imaging. 2000;12:140–9. Available from: https://doi.org/10.1002/1522-2586(200007)12:1%3C140::aid-jmri15%3E3.0.co;2-d.

  185. U.S. Department of Health and Human Services. Criteria for significant risk investigations of magnetic resonance diagnostic devices guidance for industry and Food and Drug Administration staff. 2014. Available from: https://www.fda.gov/media/71385/download

  186. Centers for Disease Control and Prevention. What noises cause hearing loss? CDC. 2019. Available from: https://www.cdc.gov/nceh/hearing_loss/what_noises_cause_hearing_loss.html

  187. Foster JR, Hall DA, Summerfield AQ, Palmer AR, Bowtell RW. Sound-level measurements and calculations of safe noise dosage during EPI at 3 T. J Magn Reson Imaging. 2000;12:157–63. Available from: https://doi.org/10.1002/1522-2586(200007)12:1%3C157::aid-jmri17%3E3.0.co;2-m.

  188. Richard C, Courbon G, Laroche N, Prades JM, Vico L, Malaval L. Inner ear ossification and mineralization kinetics in human embryonic development – microtomographic and histomorphological study. Sci Rep. 2017;7:4825. Available from: https://doi.org/10.1038/s41598-017-05151-0.

  189. Gerhardt KJ, Abrams RM, Kovaz BM, Gomez KJ, Conlon M. Intrauterine noise levels produced in pregnant ewes by sound applied to the abdomen. Am J Obstet Gynecol. 1988;159:228–32. Available from: https://doi.org/10.1016/0002-9378(88)90526-1.

  190. Sohmer H, Perez R, Sichel J-Y, Priner R, Freeman S, Sohmer H. The pathway enabling external sounds to reach and excite the fetal inner ear. Audiol Neurootol. 2001;6:109–16. Available from: https://doi.org/10.1159/000046817.

  191. Strizek B, Jani JC, Mucyo E, De Keyzer F, Pauwels I, Ziane S, et al. Safety of MR imaging at 1.5 T in fetuses: a retrospective case-control study of birth weights and the effects of acoustic noise. Radiology. 2015;275:530–7. Available from: https://doi.org/10.1148/radiol.14141382.

  192. Reeves MJ, Brandreth M, Whitby EH, Hart AR, Paley MNJ, Griffiths PD, et al. Neonatal cochlear function: measurement after exposure to acoustic noise during in utero MR imaging. Radiology. 2010;257:802–9. Available from: https://doi.org/10.1148/radiol.10092366.

  193. Beam AS, Moore KG, Gillis SN, Ford KF, Gray T, Steinwinder AH, et al. GBCAs and risk for nephrogenic systemic fibrosis: a literature review. Radiol Technol. 2017;88:583–9.

    Google Scholar 

  194. Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17:2359–62.

    Article  Google Scholar 

  195. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadoliniumbased contrast material. Radiology. 2014;270:834–41. Available from: https://doi.org/10.1148/radiol.13131669.

  196. Murata N, Murata K, Gonzalez-Cuyar LF, Maravilla KR. Gadolinium tissue deposition in brain and bone. Magn Reson Imaging. 2016;34:1359–65. Available from: https://doi.org/10.1016/j.mri.2016.08.025.

  197. Stanescu AL, Shaw DW, Murata N, Murata K, Rutledge JC, Maloney E, et al. Brain tissue gadolinium retention in pediatric patients after contrast-enhanced magnetic resonance exams: pathological confirmation. Pediatr Radiol. 2020;50:388–96. Available from: https://doi.org/10.1007/s00247-019-04535-w.

  198. Morisetti A, Bussi S, Tirone P, De Haën C. Toxicological safety evaluation of gadobenate dimeglumine 0.5 M solution for injection (MultiHance®), a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr. 1999;23:S207–17. Available from: https://doi.org/10.1097/00004728-199911001-00025.

  199. Soltys RA. Summary of preclinical safety evaluation of gadoteridol injection. Invest Radiol. 1992;27 Suppl 1:S7–11. Available from: pmid: 1506157.

    Google Scholar 

  200. Rofsky NM, Pizzarello DJ, Weinreb JC, Ambrosino MM, Rosenberg C. Effect on fetal mouse development of exposure to MR imaging and gadopentetate dimeglumine. J Magn Reson Imaging. 1994;4:805–7. Available from: https://doi.org/10.1002/jmri.1880040611.

  201. Marcos HB, Semelka RC, Worawattanakul S. Normal placenta: gadolinium-enhanced, dynamic MR imaging. Radiology. 1997;205:487–92. Available from: https://doi.org/10.1148/radiology.205.2.9356634.

  202. De Santis M, Straface G, Cavaliere AF, Carducci B, Caruso A. Gadolinium periconceptional exposure: pregnancy and neonatal outcome. Acta Obstet Gynecol Scand. 2007;86:99–101. Available from: https://doi.org/10.1080/00016340600804639.

  203. Choi JS, Ahn HK, Han JY, Han YJ, Kwak DO, Velazquez-Armenta EY, et al. A case series of 15 women inadvertently exposed to magnetic resonance imaging in the first trimester of pregnancy. J Obstet Gynecol. 2015;35:871–2. Available from: https://doi.org/10.3109/01443615.2015.1017559.

  204. Amin R, Darrah T, Wang H, Amin S. In utero exposure to gadolinium and adverse neonatal outcomes in premature infants. Toxicol Sci. 2017;156:520–6. Available from: https://doi.org/10.1093/toxsci/kfx013.

  205. Loomba RS, Chandrasekar S, Shah PH, Sanan P. The developing role of fetal magnetic resonance imaging in the diagnosis of congenital cardiac anomalies: a systematic review. Ann Pediatr Cardiol. 2011;4:172–6. Available from: https://doi.org/10.4103/0974-2069.84665.

  206. Lloyd DFA, Pushparajah K, Simpson JM, van Amerom JFP, van Poppel MPM, Schulz A, et al. Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study. Lancet. 2019;393:1619–27. Available from: https://doi.org/10.1016/S0140-6736(18)32490-5.

  207. Abaci Turk E, Yetisir F, Adalsteinsson E, Gagoski B, Guerin B, Grant PE, et al. Individual variation in simulated fetal SAR assessed in multiple body models. Magn Reson Med. 2020;83:1418–28. Available from: https://doi.org/10.1002/mrm.28006.

  208. Pediaditis M, Leitgeb N, Cech R. RF-EMF exposure of fetus and mother during magnetic resonance imaging. Phys Med Biol. 2008;53:7187–95. Available from: https://doi.org/10.1088/0031-9155/53/24/012.

  209. Hand JW, Li Y, Thomas EL, Rutherford MA, Hajnal JV. Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy. Magn Reson Med. 2006;55:883–93. Available from: https://doi.org/10.1002/mrm.20824.

  210. Nagaoka T, Niwa T, Watanabe S. Specific absorption rate in mothers and fetuses in the second and third trimesters of pregnancy. Int J Microw Opt Technol. 2014;9:34–8. Available from: https://www.ijmot.com/ijmot/uploaded/1453219014.pdf

  211. Kikuchi S, Saito K, Takahashi M, Ito K. Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging. Phys Med Biol. 2010;55:2411–26. Available from: https://doi.org/10.1088/0031-9155/55/8/018.

  212. Shetty AN, Pautler R, Ghaghada K, Rendon D, Gao H, Starosolski Z, et al. A liposomal Gd contrast agent does not cross the mouse placental barrier. Sci Rep. 2016;6:27863. Available from: https://doi.org/10.1038/srep27863.

  213. Sudhakaran N, Sothinathan U, Patel S. Best practice guidelines: fetal surgery. Early Hum Dev. 2012;88:15–9. Available from: https://doi.org/10.1016/j.earlhumdev.2011.11.006.

  214. Green P, Alfirevic Z. The evidence base for fetal medicine. Best Pract Res Clin Obstet Gynaecol. 2005;19:75–83. Available from: https://doi.org/10.1016/j.bpobgyn.2004.10.016.

  215. Licci M, Guzman R, Soleman J. Maternal and obstetric complications in fetal surgery for prenatal myelomeningocele repair: a systematic review. Neurosurg Focus. 2019;47:E11. Available from: https://doi.org/10.3171/2019.7.FOCUS19470.

  216. Adzick NS, Thom EA, Spong CY, Brock JW, Burrows PK, Johnson MP, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):993–1004.

    Article  CAS  Google Scholar 

  217. Deprest J, Jani J, Lewi L, Ochsenbein-Kölble N, Cannie M, Doné E, et al. Fetoscopic surgery: encouraged by clinical experience and boosted by instrument innovation. Semin Fetal Neonatal Med. 2006;11:398–412. Available from: https://doi.org/10.1016/j.siny.2006.09.003.

  218. Van der Veeken L, Russo FM, De Catte L, Gratacos E, Benachi A, Ville Y, et al. Fetoscopic endoluminal tracheal occlusion and reestablishment of fetal airways for congenital diaphragmatic hernia. Gynecol Surg. 2018;15:9. Available from: https://doi.org/10.1186/s10397-018-1041-9.

  219. Wenstrom KD, Carr SR. Fetal surgery: principles, indications, and evidence. Obstet Gynecol. 2014;124:817–35. Available from: https://doi.org/10.1097/AOG.0000000000000476.

  220. Adzick NS. Management of fetal lung lesions. Clin Perinatol. 2009;36:363–76. Available from: https://doi.org/10.1016/j.clp.2009.03.001.

  221. Knox EM, Kilby MD, Martin WL, Khan KS. In-utero pulmonary drainage in the management of primary hydrothorax and congenital cystic lung lesion: a systematic review. Ultrasound Obstet Gynecol. 2006;28:726–34.

    Article  CAS  Google Scholar 

  222. Schrey S, Kelly EN, Langer JC, Davies GA, Windrim R, Seaward PGR, et al. Fetal thoracoamniotic shunting for large macrocystic congenital cystic adenomatoid malformations of the lung. Ultrasound Obstet Gynecol. 2012;39:515–20.

    Article  CAS  Google Scholar 

  223. Ruano R, da Silva MM, Salustiano EMA, Kilby MD, Tannuri U, Zugaib M. Percutaneous laser ablation under ultrasound guidance for fetal hyperechogenic microcystic lung lesions with hydrops: a single center cohort and a literature review. Prenat Diagn. 2012;32:1127–32.

    Article  Google Scholar 

  224. Yuan SM, Humuruola G. Fetal cardiac interventions: clinical and experimental research. Postepy Kardiol Interwencyjnej. 2016;12:99–107. Available from: https://doi.org/10.5114/aic.2016.59359.

  225. Danzer E, Rintoul NE, Adzick NS. Pathophysiology of neural tube defects. In: Fetal and neonatal physiology. Philadelphia: W. B. Saunders; 2017. https://doi.org/10.1016/b978-0-323-35214-7.00171-2.

    Chapter  Google Scholar 

  226. Clayton DB, Thomas JC, Brock JW. Fetal repair of myelomeningocele: current status and urologic implications. J Pediatr Urol. 2020;16(1):3–9.

    Article  Google Scholar 

  227. Roybal JL, Moldenhauer JS, Khalek N, Bebbington MW, Johnson MP, Hedrick HL, et al. Early delivery as an alternative management strategy for selected high-risk fetal sacrococcygeal teratomas. J Pediatr Surg. 2011;46:1325–32. Available from: https://doi.org/10.1016/j.jpedsurg.2010.10.020.

  228. Van Mieghem T, Al-Ibrahim A, Deprest J, Lewi L, Langer JC, Baud D, et al. Minimally invasive therapy for fetal sacrococcygeal teratoma: case series and systematic review of the literature. Ultrasound Obstet Gynecol. 2014;43:611–9. Available from: https://doi.org/10.1002/uog.13315.

  229. Makin EC, Hyett J, Ade-Ajayi N, Patel S, Nicolaides K, Davenport M. Outcome of antenatally diagnosed sacrococcygeal teratomas: single-center experience (1993–2004). J Pediatr Surg. 2006;41:388–93. Available from: https://doi.org/10.1016/j.jpedsurg.2005.11.017.

  230. Senat M-V, Deprest J, Boulvain M, Paupe A, Winer N, Ville Y. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004;351:136–44. Available from: https://doi.org/10.1056/NEJMoa032597.

  231. Kitagawa H, Pringle KC. Fetal surgery: a critical review. Pediatr Surg Int. 2017;33:421–33. Available from: https://doi.org/10.1007/s00383-016-4044-5.

  232. Brock JW, Thomas JC, Baskin LS, Zderic SA, Thom EA, Burrows PK, et al. Effect of prenatal repair of myelomeningocele on urological outcomes at school age. J Urol. 2019;202(4):812–8.

    Article  Google Scholar 

  233. Clark TJ, Martin WL, Divakaran TG, Whittle MJ, Kilby MD, Khan KS. Prenatal bladder drainage in the management of fetal lower urinary tract obstruction: a systematic review and meta-analysis. Obstet Gynecol. 2003;102:367–82. Available from: https://doi.org/10.1016/S0029-7844(03)00577-5.

  234. Adzick NS, Thom EA, Spong CY, Brock JW, Burrows PK, Johnson MP, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364:993–1004. Available from: https://doi.org/10.1056/NEJMoa1014379.

  235. Adzick NS. Open fetal surgery for life-threatening fetal anomalies. Semin Fetal Neonatal Med. 2010;15:1–8. Available from: https://doi.org/10.1016/j.siny.2009.05.003.

  236. Beckers K, Faes J, Deprest J, Delaere PR, Hens G, De Catte L, et al. Long-term outcome of pre- and perinatal management of congenital head and neck tumors and malformations. Int J Pediatr Otorhinolaryngol. 2019;121:164–72. Available from: https://doi.org/10.1016/j.ijporl.2019.03.018.

  237. Kohl T. Percutaneous minimally invasive fetoscopic surgery for spina bifida aperta. Part I: surgical technique and perioperative outcome. Ultrasound Obstet Gynecol. 2014;44:515–24. Available from: https://doi.org/10.1002/uog.13430.

  238. Deprest JA, Flake AW, Gratacos E, Ville Y, Hecher K, Nicolaides K, et al. The making of fetal surgery. Prenat Diagn. 2010;30:653–67. Available from: https://doi.org/10.1002/pd.2571.

  239. Partridge EA, Davey MG, Hornick MA, McGovern PE, Mejaddam AY, Vrecenak JD, et al. An extra-uterine system to physiologically support the extreme premature lamb. Nat Commun. 2017;8:1–16. Available from: https://doi.org/10.1016/j.jpedsurg.2013.09.042.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie Hirsig Spence .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Spence, L.H., Eklund, M., Wineland, R., Alkis, M., Vidal, L. (2022). Approach to Fetal Anomalies. In: Otero, H.J., Kaplan, S.L., Medina, L.S., Blackmore, C.C., Applegate, K.E. (eds) Evidence-Based Imaging in Pediatrics. Evidence-Based Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-38095-3_64-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38095-3_64-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38095-3

  • Online ISBN: 978-3-030-38095-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics