Skip to main content

Pathology of Pancreatic Neuroendocrine Tumors

  • Living reference work entry
  • First Online:
Hepato-Pancreato-Biliary Malignancies

Abstract

Pancreatic neuroendocrine neoplasms (PanNENs) are rare tumors derived from pancreatic neuroendocrine cells. Recently, the World Health Organization modified and updated the classification of PanNENs, introducing new diagnostic entities and refining prognostic stratification in order to improve potential therapeutic strategies.

The aim of this chapter is to provide clinical and pathological knowledge about PanNENs, in order to permit effective diagnostic approach to these particular entities.

In particular, the latest changes included in WHO classification are illustrated, and all the new entities are described (PanNENs grade 3, pancreatic neuroendocrine carcinomas, and mixed neuroendocrine non-neuroendocrine neoplasms). All the paragraphs include concise but exhaustive pathologic features of neuroendocrine tumors, along with histopathological, cytological, and clinical diagnostic criteria.

Lastly, recent and updated concepts about genetic features and molecular biology of PanNENs are included in every paragraph, offering a useful point of view about new therapeutic frontiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Kloppel G, Couvelard A, et al. Chapter 6: Neoplasms of the neuroendocrine pancreas. In: Lloyd RV, Osamura RY, Kloppel G, Rosai J, editors. WHO classification of tumours of endocrine organs. 4th ed. Lyon: IARC Press; 2017.

    Google Scholar 

  2. Fang JM, Shi J. A clinicopathologic and molecular update of pancreatic neuroendocrine neoplasms with a focus on the new World Health Organization classification. Arch Pathol Lab Med. 2019;143:1317–26. https://doi.org/10.5858/arpa.2019-0338-RA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Capelli P, Martignoni G, Pedica F, et al. Endocrine neoplasms of the pancreas: pathologic and genetic features. Arch Pathol Lab Med. 2009;133(3):350–64. https://doi.org/10.1043/1543-2165-133.3.350.

    Article  PubMed  Google Scholar 

  4. Singhi AD, Klimstra DS. Well-differentiated pancreatic neuroendocrine tumours (PanNETs) and poorly differentiated pancreatic neuroendocrine carcinomas (PanNECs): concepts, issues and a practical diagnostic approach to high-grade (G3) cases. Histopathology. 2018;72(1):168–77. https://doi.org/10.1111/his.13408.

    Article  PubMed  Google Scholar 

  5. Rindi G, Kloppel G, Couvelard A, et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2007;451:757–62.

    CAS  PubMed  Google Scholar 

  6. Tang LH. Pancreatic neuroendocrine neoplasms: landscape and horizon. Arch Pathol Lab Med. 2020;144(7):816–28. https://doi.org/10.5858/arpa.2019-0654-RA.

    Article  CAS  PubMed  Google Scholar 

  7. Bosman FT, Carneiro F, Hruban RH, Theise ND, editors. WHO classification of tumours of the digestive system, vol. 3. 4th ed. Geneva: WHO Press; 2010. World Health Organization classification of tumours.

    Google Scholar 

  8. Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas. 2010;39(6):707–12. https://doi.org/10.1097/MPA.0b013e3181ec124e.

    Article  PubMed  Google Scholar 

  9. Tang LH, Untch BR, Reidy DL, et al. Well-differentiated neuroendocrine tumors with a morphologically apparent high-grade component: a pathway distinct from poorly differentiated neuroendocrine carcinomas. Clin Cancer Res. 2016;22(4):1011–7.

    CAS  PubMed  Google Scholar 

  10. Choe J, Kim KW, Kim HJ, Kim DW, Kim KP, Hong SM, Ryu JS, Tirumani SH, Krajewski K, Ramaiya N. What Is New in the 2017 World Health Organization Classification and 8th American Joint Committee on Cancer Staging System for Pancreatic Neuroendocrine Neoplasms? Korean J Radiol. 2019;20(1):5–17. https://doi.org/10.3348/kjr.2018.0040. Epub 2018 Dec 27.

  11. Gill A, Klimstra D, Lam A, et al. Tumors of the pancreas. In: WHO classification of tumors: digestive system tumours. 5th ed. Lyon: International Agency for Research on Cancer; 2019. p. 295–376.

    Google Scholar 

  12. Gill AJ, Klimstra DS, et al. Tumors of the pancreas. In: WHO classification of tumors: digestive system tumours. 5th ed. Lyon: International Agency for Research on Cancer; 2019. p. 295–376.

    Google Scholar 

  13. Taskin OC, Clarke CN, Erkan M, Tsai S, Evans DB, Adsay V. Pancreatic neuroendocrine neoplasms: current state and ongoing controversies on terminology, classification and prognostication. J Gastrointest Oncol. 2020;11(3):548–58. https://doi.org/10.21037/jgo.2020.03.07.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guilmette JM, Nosé V. Neoplasms of the neuroendocrine pancreas: an update in the classification, definition, and molecular genetic advances. Adv Anat Pathol. 2019;26(1):13–30.

    Google Scholar 

  15. Rindi G, Klöppel G, Alhman H, et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006;449(4):395–401. https://doi.org/10.1007/s00428-006-0250-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo G, Javed A, Strosberg JR, et al. Modified staging classification for pancreatic neuroendocrine tumors on the basis of the American Joint Committee on Cancer and European Neuroendocrine Tumor Society Systems. J Clin Oncol. 2017;35(3):274–80. https://doi.org/10.1200/JCO.2016.67.8193.

    Article  PubMed  Google Scholar 

  17. Bergsland EK, Woltering EA, et al. Neuroendocrine tumors of pancreas. In: Amin MB, Edge SB, Greene FL, et al., editors. AJCC cancer staging manual. 8th ed. New York: Springer; 2017. p. 415–6.

    Google Scholar 

  18. De Robertis R, et al. Pancreatic neuroendocrine neoplasms: magnetic resonance imaging features according to grade and stage. World J Gastroenterol. 2017;23:275–85.

    PubMed  PubMed Central  Google Scholar 

  19. Chap 12 Endocrine neoplasms, p 272. In: Hruban RH, Bishop Pitman M, Klimstra DS. Tumors of the pancreas. 2007 AFIP Atlas of tumor pathology series 4.

    Google Scholar 

  20. Chap 17 Diagnostic evaluation of pancreatic neoplasms, p 399. In: Hruban RH, Bishop Pitman M, Klimstra DS. Tumors of the pancreas. 2007 AFIP Atlas of tumor pathology series 4.

    Google Scholar 

  21. Manfrin ESA, Scarpa S, Pelosi G. Pathological analysis of abdominal neuroendocrine tumors. In: Carlini M, editor. Abdominal neuroendocrine tumors. Updates in surgery. Milan: Springer; 2017. p. 123–35.

    Google Scholar 

  22. Klimstra DS, Klöppel G, La Rosa S, Rindi G. Classification of neuroendocrine neoplasms of the digestive system. In: Digestive system WHO classification of tumours, vol. 1. 5th ed. WHO Classification of Tumours Editorial Board Publication; Lyon, 2019. p. 16.

    Google Scholar 

  23. Brugge WR, De Witt J, Klapman JB, Ashfaq R, Shidham V, Chhieng D, et al. Techniques for cytologic sampling of pancreatic and bile duct lesions: The Papanicolaou society of cytopathology guidelines. CytoJournal. 2014;11(Suppl 1):2.

    PubMed  PubMed Central  Google Scholar 

  24. D’Onofrio M, De Robertis R, Barbi E, Martone E, Manfrin E, Gobbo S, et al. Ultrasound-guided percutaneous fine-needle aspiration of solid pancreatic neoplasms: 10-year experience with more than 2,000 cases and a review of the literature. Eur Radiol. 2016;26(6):1801–7.

    PubMed  Google Scholar 

  25. Chang F, Vu C, Chandra A, Meenan J, Herbert A. Endoscopic ultrasound-guided fine needle aspiration cytology of pancreatic neuroendocrine tumours: cytomorphological and immunocytochemical evaluation. Cytopathology. 2006;17(1):10–7.

    CAS  PubMed  Google Scholar 

  26. Siddiqui AA, Brown LJ, Hong SK, Draganova-Tacheva RA, Korenblit J, Loren DE, et al. Relationship of pancreatic mass size and diagnostic yield of endoscopic ultrasound-guided fine needle aspiration. Dig Dis Sci. 2011;56(11):3370–5.

    PubMed  Google Scholar 

  27. Pitman MB, Centeno BA, Ali SZ, Genevay M, Stelow E, Mino-Kenudson M, et al. Standardized terminology and nomenclature for pancreatobiliary cytology: the Papanicolaou Society of Cytopathology guidelines. Diagn Cytopathol. 2014;42(4):338–50.

    PubMed  Google Scholar 

  28. Grosse C, Noack P, Silye R. Accuracy of grading pancreatic neuroendocrine neoplasms with Ki-67 index in fine-needle aspiration cell block material. Cytopathology. 2019;30(2):187–93. https://doi.org/10.1111/cyt.12643. Epub 2018 Nov 28

    Article  PubMed  Google Scholar 

  29. Klöppel G, Hruban RH, Klimstra DS, Rindi G, Scarpa A. Non-functioning pancreatic neuroendocrine tumours. In: Digestive system WHO classification of tumours, vol. 1. 5th ed. WHO Classification of Tumours Editorial Board Publication; Lyon, 2019. p. 347.

    Google Scholar 

  30. Hochwald SN, Zee S, Conlon KC, et al. Prognostic factors in pancreatic endocrine neoplasms: an analysis of 136 cases with a proposal for low-grade and intermediate-grade groups. J Clin Oncol. 2002;20:2633–42.

    PubMed  Google Scholar 

  31. Ferrone CR, Tang LH, Tomlinson J, et al. Determining prognosis in patients with pancreatic endocrine neoplasms: can the WHO classification system be simplified? J Clin Oncol. 2007;25(35):5609–15.

    PubMed  Google Scholar 

  32. Rindi G, Falconi M, Klersy C, et al. TNM staging of neoplasms of the endocrine pancreas: results from a large international cohort study. J Natl Cancer Inst. 2012;104(10):764–77. PMID:22525418.

    CAS  PubMed  Google Scholar 

  33. Garcia-Carbonero R, Sorbye H, Baudin E, et al. ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine carcinomas. Neuroendocrinology. 2016;103:186–94.

    CAS  PubMed  Google Scholar 

  34. Rindi G, Klersy C, Albarello L, et al. Competitive testing of the WHO 2010 versus the WHO 2017 grading of pancreatic neuroendocrine neoplasms: data from a large international cohort study. Neuroendocrinology. 2018;107(4):375–86. PMID: 30300897.

    CAS  PubMed  Google Scholar 

  35. Anlauf M, Schlenger R, Perren A, et al. Microadenomatosis of the endocrine pancreas in patients with and without the multiple endocrine neoplasia type 1 syndrome. Am J Surg Pathol. 2006;30(5):560–74. PMID: 16699310.

    PubMed  Google Scholar 

  36. Gumbs AA, Moore PS, Falconi M, et al. Review of the clinical, histological, and molecular aspects of pancreatic endocrine neoplasms. J Surg Oncol. 2002;81(1):45–53, Discussion 54. PMID: 12210027.

    CAS  PubMed  Google Scholar 

  37. Blansfield JA, Choyke L, Morita SY, et al. Clinical, genetic and radiographic analysis of 108 patients with von Hippel-Lindau disease (VHL) manifested by pancreatic neuroendocrine neoplasms (PNETs). Surgery. 2007;142(6):814–8, Discussion 818.e1–2. PMID:18063061.

    PubMed  Google Scholar 

  38. Hammel PR, Vilgrain V, Terris B, et al. Pancreatic involvement in von Hippel-Lindau disease. The Groupe Francophone d’Etude de la Maladie de von Hippel-Lindau. Gastroenterology. 2000;119(4):1087–95. PMID: 11040195.

    CAS  PubMed  Google Scholar 

  39. Perigny M, Hammel P, Corcos O, et al. Pancreatic endocrine microadenomatosis in patients with von Hippel-Lindau disease: characterization by VHL/HIF pathway proteins expression. Am J Surg Pathol. 2009;33(5):739–48. PMID: 19238077.

    PubMed  Google Scholar 

  40. Richard S, Gardie B, Couvè S, et al. Von Hippel-Lindau: how a rare disease illuminates cancer biology. Semin Cancer Biol. 2013;23(1):26–37.

    CAS  PubMed  Google Scholar 

  41. Scarpa A, Mantovani W, Capelli P, et al. Pancreatic endocrine tumors: Improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Mod Pathol. 2010;23:824–33.

    CAS  PubMed  Google Scholar 

  42. Kent RB, van Heerden JA, Weiland LH. Non-functioning islet cell tumors. Ann Surg. 1981;193:185–90.

    PubMed  PubMed Central  Google Scholar 

  43. Kulke MH, Anthony LB, Bushnell DL, et al. NANETS treatment guidelines: well-differentiated neuroendocrine tumors of the stomach and pancreas. Pancreas. 2010;39(6):735–52.

    PubMed  PubMed Central  Google Scholar 

  44. Chap 12 Endocrine neoplasms, p 256. In: Hruban RH, Bishop Pitman M, Klimstra DS. Tumors of the pancreas. 2007 AFIP atlas of tumor pathology series 4.

    Google Scholar 

  45. Baudin E, Bidart JM, Bachelot A, et al. Impact of chromogranin A measurement in the work-up of neuroendocrine tumors. Ann Oncol. 2001;12(Suppl 2):S79–82.

    PubMed  Google Scholar 

  46. Venkatesh S, Ordonez NG, Ajani J, et al. Islet cell carcinoma of the pancreas. A study of 98 patients. Cancer. 1990;65(2):354–7.

    CAS  PubMed  Google Scholar 

  47. Klimstra DS, Perren A, Oberg K, et al. Pancreatic endocrine tumours: non-functioning tumours and microadenomas. In: De Lellis RA, Lloyd RV, Heitz PU, Eng C, editors. Pathology and genetics of tumours of endocrine organs. Lyon: International Agency for Research on Cancer (IARC) Press; 2004. p. 201–4.

    Google Scholar 

  48. Chap 12 Endocrine neoplasms, p 258. In: Hruban RH, Bishop Pitman M, Klimstra DS. Tumors of the pancreas. 2007 AFIP Atlas of tumor pathology series 4.

    Google Scholar 

  49. Smith AE, Lewi AW, Nadasdy T, Campbell KA, Fishman EK, Hruban RH. The pigmented “black” neuroendocrine tumor of the pancreas: a question of origin. Cancer. 2001;92:1984–91.

    CAS  PubMed  Google Scholar 

  50. Singhi AD, Chu LC, Tatsas AD, et al. Cystic pancreatic neuroendocrine tumors: a clinicopathologic study. Am J Surg Pathol. 2012;36(11):1666–73.

    PubMed  Google Scholar 

  51. Keel SB, Zukerberg L, Graeme-Cook F, Compton CC. A pancreatic endocrine tumor arising within a serous cystadenoma of the pancreas. Am J Surg Pathol. 1996;20(4):471–5.

    CAS  PubMed  Google Scholar 

  52. Chetty R, El-Shinnawy I. Intraductal pancreatic neuroendocrine tumor. Endocr Pathol. 2009;20(4):262–6.

    CAS  PubMed  Google Scholar 

  53. Collins BT, Cramer HM. Fine-needle aspiration cytology of islet cell tumors. Diagn Cytopathol. 1996;15:37–45.

    CAS  PubMed  Google Scholar 

  54. Collins BT, Saeed ZA. Fine needle aspiration biopsy of pancreatic endocrine neoplasms by endoscopic ultrasonographic guidance. Acta Cytol. 2001;45:905–7.

    CAS  PubMed  Google Scholar 

  55. Chap 12 Endocrine neoplasms, pp. 269–270. In: Hruban RH, Bishop Pitman M, Klimstra DS. Tumors of the pancreas. 2007 AFIP atlas of tumor pathology series 4.

    Google Scholar 

  56. Vinayek R, Carpuso G, Larghi A. Grading of EUS-FNA cytologic specimens from patients with pancreatic neuroendocrine neoplasms: it is time move to tissue core biopsy? Gland Surg. 2014;3(4):222–5.

    PubMed  PubMed Central  Google Scholar 

  57. Farrell JM, Pang JC, Kim GE, et al. Pancreatic neuroendocrine tumors: accurate grading with Ki-67 index on fine-needle aspiration specimens using the WHO 2010/ENETS criteria. Cancer Cytopathol. 2014;122(10):770–8.

    PubMed  Google Scholar 

  58. Sigel CS, Krauss Silva VW, Reid MD, et al. Assessment of cytologic differentiation in high-grade pancreatic neuroendocrine neoplasms: a multi-institutional study. Cancer Cytopathol. 126(1):44–53.

    Google Scholar 

  59. Chap 12 Endocrine neoplasms, pp. 270–1. In: Hruban RH, Bishop Pitman M, Klimstra DS. Tumors of the pancreas. 2007 AFIP Atlas of tumor pathology series 4.

    Google Scholar 

  60. Kitami CE, Shimizu T, Sato O, et al. Malignant islet cell tumor projecting into the main pancreatic duct. J Hepato-Biliary-Pancreat Surg. 2000;7:529–33.

    CAS  Google Scholar 

  61. Shi C, Klimstra DS. Pancreatic neuroendocrine tumors: pathologic and molecular characteristics. Semin Diagn Pathol. 2014;31(6):498–511.

    PubMed  Google Scholar 

  62. Klöppel G, Heitz PU. Morphology and functional activity of gastroenteropancreatic neuroendocrine tumours. Recent Results Cancer Res. 1990;118:27–36.

    PubMed  Google Scholar 

  63. Klimstra DS, Volkan Adsay N. Tumors of the pancreas. In: Odze RD, Goldblum JR, editors. Odze & Goldblum surgical pathology of the GI tract, liver, biliary tract, and pancreas, 2008, 3rd ed., in Chap 40, Elsevier Saunders; p 1113.

    Google Scholar 

  64. Chap 12 Endocrine neoplasms, p 262. In: Hruban RH, Bishop Pitman M, Klimstra DS. Tumors of the pancreas. 2007 AFIP Atlas of tumor pathology series 4.

    Google Scholar 

  65. Kloppel G, Heitz PU, Capella C, SOlcia E. Endocrine tumours of the pancreas. In: Socia E, Kloppel G, Sobin LH, editors. Histological typing of endocrine tumours. 2nd ed. Berlin: Springer; 2000. p. 56–60.

    Google Scholar 

  66. Westermark P, Wernstedt C, Wilander E, Sletten K. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun. 1986;140:827–31.

    CAS  PubMed  Google Scholar 

  67. Klöppel G, Hruban RH, Klimstra DS, Rindi G, Scarpa A. Non-functioning pancreatic neuroendocrine tumours. In: Digestive system WHO classification of tumours, vol. 1. 5th ed. WHO Classification of Tumours Editorial Board Publication; Lyon, 2019. p. 348.

    Google Scholar 

  68. Klöppel G, Hruban RH, Klimstra DS, Rindi G, Scarpa A. Non-functioning pancreatic neuroendocrine tumours. In: Digestive system WHO classification of tumours, vol. 1. 5th ed. WHO Classification of Tumours Editorial Board Publication; Lyon, 2019. p. 349.

    Google Scholar 

  69. Zee S, Hochwald S, Conlon KC, Brennan MF, Klimstra DS. Pleomorphic pancreatic endocrine neoplasms: a variant commonly confused with adenocarcinoma. Am J Surg Pathol. 2005;29:1194–200.

    PubMed  Google Scholar 

  70. Singh R, Basturk O, Klimstra DS, et al. Lipid-rich variant of pancreatic endocrine neoplasms. Am J Surg Pathol. 2006;30:194–200.

    PubMed  Google Scholar 

  71. Hoang MP, Hruban RH, Albores-Saavedra J. Clear cell endocrine pancreatic tumor mimicking renal cell carcinoma: a distinctive neoplasm of von Hippel-Lindau disease. Am J Surg Pathol. 2001;25:602–9.

    CAS  PubMed  Google Scholar 

  72. Kloppel G, Willemer S, Stamm B, Hacki WH, Heitz PU. Pancreatic lesions and hormonal profile of pancreatic tumors in multiple endocrine neoplasia type 1. An immunocytochemical study of nine patients. Cancer. 1986;57:1824–32.

    CAS  PubMed  Google Scholar 

  73. Solcia E, Capella C, Kloppel G. Tumors of the pancreas. AFIP atlas of tumor pathology, 3rd series, Fascicle 20. Washington, DC: American Registry of Pathology; 1997.

    Google Scholar 

  74. Kunz J, Amendt P, Hanh von Dorsche H, Gerl H, Knappe E, Lorenz D. The endocrine pancreas in pluriglandular neoplasia type I. A report of two cases and review of the literature. Zentralbl Allg Pathol. 1983;127:375–83. [German].

    CAS  PubMed  Google Scholar 

  75. Klimstra DS, Volkan Adsay N. Tumors of the pancreas. In: Odze RD, Goldblum JR, editors. Odze & Goldblum surgical pathology of the GI tract, liver, biliary tract, and pancreas. 2008, 3rd ed. Elsevier Saunders, Amsterdam. p. 1112. in Chap 40.

    Google Scholar 

  76. Klimstra DS. Pathology reporting of neuroendocrine tumors: essential elements for accurate diagnosis, classification, and staging. Semin Oncol. 2013;40:23–36.

    PubMed  Google Scholar 

  77. Uccella S, La Rosa S, Volante M, et al. Immunohistochemical biomarkers of gastrointestinal, pancreatic, pulmonary, and thymic neuroendocrine neoplasms. Endocrine Pathol. 2018;29(2):150–68.

    Google Scholar 

  78. Liu TH, Zhu Y, Cui QC, et al. Nonfunctioning pancreatic endocrine tumors: an immunohistochemical and electron microscopic analysis of 26 cases. Pathol Res Pract. 1992;188:191–8.

    CAS  PubMed  Google Scholar 

  79. Agaimy A, Erlenbach-Wünsch K, Konukiewitz B, et al. ISL1 expression is not restricted to pancreatic well-differentiated neuroendocrine neoplasms, but is also commonly found in well e poorly differentiated neuroendocrine neoplasms of extrapancreatic origin. Mod Pathol. 2013;26(7):995–1003.

    CAS  PubMed  Google Scholar 

  80. Graham RP, Shrestha B, Caron BL, et al. Islet-1 is a sensitive but not entirely specific marker for pancreatic neuroendocrine neoplasms and their metastases. Am J Surg Pathol. 2013;37(3):399–405.

    PubMed  Google Scholar 

  81. Klimstra DS, Volkan Adsay N. Tumors of the pancreas. In: Odze RD, Goldblum JR, editors. Odze & Goldblum surgical pathology of the GI tract, liver, biliary tract, and pancreas. 2008, 3rd ed. Elsevier Saunders, Amsterdam. p. 1114. in Chap 40.

    Google Scholar 

  82. Hermann G, Konukiewitz B, Schmitt A, et al. Hormonally defined pancreatic and duodenal neuroendocrine tumors differ in their transcription factor signatures: expression of ISL1, PDX1, NGN3, and CDX2. Virchows Arch. 2011;459:147–54.

    CAS  PubMed  Google Scholar 

  83. Akiyama T, Shida T, Yoshitomi H, et al. Expression of sex determining region Y-box 2 and pancreatic and duodenal homeobox 1 in pancreatic neuroendocrine tumors. Pancreas. 2016;45(4):522–7.

    CAS  PubMed  Google Scholar 

  84. Marinoni I, Kurrer AS, Vassella E, et al. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumours. Gastroenterology. 2014;146:453–60. e5

    CAS  PubMed  Google Scholar 

  85. Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumours. Science. 2011;331:1199–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Weisbrod AB, Zhang L, Jain M, et al. Altered PTNE, ATRX, CHGA, CHGB, and TP53 expression are associated with aggressive VHL-associated pancreatic neuroendocrine tumors. HORM Cancer. 2013;4(3):165–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Scarpa A, Chang DK, Nones K, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543:65–71.

    CAS  PubMed  Google Scholar 

  88. Yachida S, Vakiani E, White CM, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36(2):173–84.

    PubMed  PubMed Central  Google Scholar 

  89. Volante M, Brizzi MP, Faggiano A, et al. Somatostatin receptor type 2° immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol. 2007;20(11):1172–82.

    CAS  PubMed  Google Scholar 

  90. Kamisawa T, TU Y, Egawa N, et al. Ductal and acinar differentiation in pancreatic endocrine tumors. Dig Dis Sci. 2002;47:2254–61.

    CAS  PubMed  Google Scholar 

  91. La Rosa S, Klimstra DS. Pancreatic MiNENs. In: Digestive system WHO classification of tumours, vol. 1. 5th ed. WHO Classification of Tumours Editorial Board Publication; Lyon, 2019. p. 370.

    Google Scholar 

  92. Klimstra DS, Volkan Adsay N. Tumors of the pancreas. In: Odze RD, Goldblum JR, editors. Odze & Goldblum surgical pathology of the gi tract, liver, biliary tract, and pancreas. 2008, 3rd ed. Elsevier Saunders, Amsterdam. p. 1117. in Chap 40.

    Google Scholar 

  93. Tang LH, Basturk O, Sue JJ, Klimstra DS. A practical approach to the classification of WHO grade 3 (G3) well-differentiated neuroendocrine tumour (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the pancreas. Am J Surg Pathol. 2016;40:1192–202.

    PubMed  PubMed Central  Google Scholar 

  94. van Eeden S, de Leng WW, Offerhaus GJ, et al. Ductuloinsular tumors of the pancreas: endocrine tumors with entrapped nonneoplastic ductules. Am J Surg Pathol. 2004;28:813–20.

    PubMed  Google Scholar 

  95. Chap 12 Endocrine neoplasms, p. 264 in Hruban RH, Bishop Pitman M, Klimstra DS. Tumors of the pancreas. 2007 AFIP Atlas of tumor pathology series 4.

    Google Scholar 

  96. Chap 12 Endocrine neoplasms, p. 259 in Hruban RH, Bishop Pitman M, Klimstra DS. Tumors of the pancreas. 2007 AFIP Atlas of tumor pathology series 4.

    Google Scholar 

  97. Chap 12 Endocrine neoplasms, p. 265 in Hruban RH, Bishop Pitman M, Klimstra DS. Tumors of the pancreas. 2007 AFIP Atlas of tumor pathology series 4.

    Google Scholar 

  98. Blobner BM, Bellin MD, Beilman GJ, Shelton CA, Park HJ, Whitcomb DC. Gene expression profiling of the pancreas in patients undergoing total pancreatectomy with islet autotransplant suggests unique features of alcoholic, idiopathic, and hereditary pancreatitis. Pancreas. 2020; https://doi.org/10.1097/MPA.0000000000001607.

  99. Hong X, Qiao S, Li F, Wang W, Jiang R, Wu H, Chen H, Liu L, Peng J, Wang J, Jia C, Liang X, Dai H, Jiang J, Zhang T, Liao Q, Dai M, Cong L, Han X, Guo D, Liang Z, Li D, Zheng Z, Ye C, Li S, Zhao Y, Wu K, Wu W. Whole-genome sequencing reveals distinct genetic bases for insulinomas and non-functional pancreatic neuroendocrine tumours: leading to a new classification system. Gut. 2020;69(5):877–87.

    CAS  PubMed  Google Scholar 

  100. Chan CS, Laddha SV, Lewis PW, et al. ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup. Nat Commun. 2018;9(1):4158.

    PubMed  PubMed Central  Google Scholar 

  101. Pipinikas CP, Berner AM, Sposito T, Thirlwell C. The evolving (epi)genetic landscape of pancreatic neuroendocrine tumours. Endocr Relat Cancer. 2019;26(9):R519–44.

    CAS  PubMed  Google Scholar 

  102. Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hu W, Feng Z, Modica I, et al. Gene amplifications in well-differentiated pancreatic neuroendocrine tumors inactivate the p53 pathway. Genes Cancer. 2010;1(4):360–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Mintziras I, Keck T, Werner J, et al. Implementation of current ENETS guidelines for surgery of small (≤2 cm) pancreatic neuroendocrine neoplasms in the German surgical community: an analysis of the prospective DGAV StuDoQjPancreas Registry. World J Surg. 2019;43(1):175–82.

    PubMed  Google Scholar 

  105. Grabowski P, Horsch D. Guidelines for gastroenteropancreatic neuroendocrine tumors – what is new: what should be incorporated in daily therapeutic decisions [in German]. Zeitschrift fur Gastroenterologie. 2015;53(10):1194–200.

    CAS  PubMed  Google Scholar 

  106. Assi HA, Mukherjee S, Kunz PL, Machiorlatti M, Vesely S, Pareek V, Hatoum H. Surgery versus surveillance for well-differentiated, nonfunctional pancreatic neuroendocrine tumors: an 11-year analysis of the national cancer database. Oncologist. 2020;25(2):e276–83.

    CAS  PubMed  Google Scholar 

  107. Cives M, Ghayouri M, Morse B, et al. Analysis of potential response predictors to capecitabine/temozolomide in metastatic pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2016;23(9):759–67.

    CAS  PubMed  Google Scholar 

  108. de Mestier L, Zappa M, Hentic O, Vilgrain V, Ruszniewski P. Liver transarterial embolizations in metastatic neuroendocrine tumors. Rev Endocr Metab Disord. 2017;18(4):459–71.

    PubMed  Google Scholar 

  109. Melstrom LG, Eng OS, Raoof M, et al. Is hepatectomy safe following Yttrium-90 therapy: a multi-institutional international experience. HPB (Oxford). 2019;21(11):1520–6.

    Google Scholar 

  110. Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):501–13.

    CAS  PubMed  Google Scholar 

  112. Ejaz A, Reames BN, Maithel S, et al. Cytoreductive debulking surgery among patients with neuroendocrine liver metastasis: a multi-institutional analysis. HPB (Oxford). 2018;20(3):277–84.

    Google Scholar 

  113. Ezziddin S, Khalaf F, Vanezi M, et al. Outcome of peptide receptor radionuclide therapy with 177Lu-octreotate in advanced grade 1/2 pancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2014;41(5):925–33.

    CAS  PubMed  Google Scholar 

  114. Kim JY, Brosnan-Cashman JA, An S, et al. Alternative lengthening of telomeres in primary pancreatic neuroendocrine tumors is associated with aggressive clinical behavior and poor survival. Clin Cancer Res. 2017;23:1598–606.

    CAS  PubMed  Google Scholar 

  115. Singhi AD, Liu TC, Roncaioli JL, et al. Alternative lengthening of telomeres and loss of DAXX/ATRX expression predicts metastatic disease and poor survival in patients with pancreatic neuroendocrine tumors. Clin Cancer Res. 2017;23:600–9.

    CAS  PubMed  Google Scholar 

  116. Roy S, LaFramboise WA, Liu TC, et al. Loss of chromatin remodeling proteins and/or CDKN2A associates with metastasis of pancreatic neuroendocrine tumors and reduced patient survival times. Gastroenterology. 2018;154:2060–3.

    CAS  PubMed  Google Scholar 

  117. Chou A, Itchins M, de Reuver PR, et al. ATRX loss is an independent predictor of poor survival in pancreatic neuroendocrine tumors. Hum Pathol. 2018;82:249–57.

    CAS  PubMed  Google Scholar 

  118. Ueda H, Akiyama Y, Shimada S, et al. Tumor suppressor functions of DAXX through histone H3.3/H3K9me3 pathway in pancreatic NETs. Endocr Relat Cancer. 2018;25:619–31.

    CAS  PubMed  Google Scholar 

  119. Cejas P, Drier Y, Dreijerink KMA, Brosens LAA, Deshpande V, Epstein CB, Conemans EB, Morsink FHM, Graham MK, Valk GD, Vriens MR, Castillo CF, Ferrone CR, Adar T, Bowden M, Whitton HJ, Da Silva A, Font-Tello A, Long HW, Gaskell E, Shoresh N, Heaphy CM, Sicinska E, Kulke MH, Chung DC, Bernstein BE, Shivdasani RA. Enhancer signatures stratify and predict outcomes of non-functional pancreatic neuroendocrine tumors. Nat Med. 2019;25(8):1260–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Abi-Raad R, Lavik JP, Barbieri AL, Zhang X, Adeniran AJ, Cai G. Grading pancreatic neuroendocrine tumors by Ki-67 index evaluated on fine-needle aspiration cell block material. Am J Clin Pathol. 2020;153(1):74–81.

    PubMed  Google Scholar 

  121. Klimstra D. Nonductal neoplasms of the pancreas. Mod Pathol. 2007;20(1s):94–112.

    Google Scholar 

  122. Croitoru A, Dinu I, Herlea V, et al. Large cell metastatic pancreatic neuroendocrine carcinoma treated with somatostatin analogues – case report and literature review. Acta Endocrinol (Buchar). 2019;15(3):390–7. https://doi.org/10.4183/aeb.2019.390.

    Article  CAS  Google Scholar 

  123. Crippa S, Partelli S, Bassi C, et al. Long-Term outcomes and prognostic factors in neuroendocrine carcinomas of the pancreas: Morphology matters. Surgery. 2016;159(3):862–71.

    PubMed  Google Scholar 

  124. Crippa S, Portelli S, Belfiori G, et al. Management of neuroendocrine carcinomas of the pancreas (WHO G3): a tailored approach between proliferation and morphology. World J Gastroenterol. 2016;22(45):9944–53.

    PubMed  PubMed Central  Google Scholar 

  125. Basturk O, Tang L, Hruban RH, et al. Poorly differentiated neuroendocrine carcinomas of the pancreas: a clinicopathologic analysis of 44 cases. Am J Surg Pathol. 2014;38(4):437–47.

    PubMed  PubMed Central  Google Scholar 

  126. Sundin A, Arnold R, Baudin E, Cwikla JB, Eriksson B, Fanti S, Fazio N, Giammarile F, Hicks RJ, Kjaer A, Krenning E, Kwekkeboom D, Lombard-Bohas C, O’Connor JM, O’Toole D, Rockall A, Wiedenmann B, Valle JW, Vullierme M-P. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine and hybrid imaging. Neuroendocrinology. 2017;105:212–44. https://doi.org/10.1159/000471879.

    Article  CAS  PubMed  Google Scholar 

  127. Binderup T, Knigge U, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010;51:704–12.

    PubMed  Google Scholar 

  128. Basturk O, Yang Z, et al. The High grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogeneous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 2015;39(5):683–90.

    PubMed  PubMed Central  Google Scholar 

  129. Lloyd R. Immunohistochemical markers of endocrine/neuroendocrine tumors. J Histotechnol. 1999;22:231–7. https://doi.org/10.1179/his.1999.22.3.231.

    Article  Google Scholar 

  130. La Rosa S, Sessa F, Capella C. Acinar cell carcinoma of the pancreas: overview of clinicopathologic features and insights into the molecular pathology. Front Med (Lausanne). 2015;2:41. https://doi.org/10.3389/fmed.2015.00041.

    Article  Google Scholar 

  131. Gurzu S, Bara T, Sincu M, et al. Solid pseudopapillary neoplasm of pancreas: Two case reports. Medicine (Baltimore). 2019;98(29):e16455. https://doi.org/10.1097/MD.0000000000016455.

    Article  Google Scholar 

  132. Kim H, An S, Lee K, Ahn S, Park DY, Kim JH, Kang DW, Kim MJ, Chang MS, Jung ES, Kim JM, Choi YJ, Jin SY, Chang HK, Cho MY, Kang YK, Kang M, Ahn S, Kim YW, Hong SM, Gastrointestinal Pathology Study Group of the Korean Society of Pathologists. Pancreatic high-grade neuroendocrine neoplasms in the Korean population: a multicenter study. Cancer Res Treat. 2020;52(1):263–76. https://doi.org/10.4143/crt.2019.192.

    Article  CAS  PubMed  Google Scholar 

  133. Reid MD, Saka B, Balci S, Goldblum AS, Adsay NV. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications. Am J Clin Pathol. 2014;141(2):168–80.

    CAS  PubMed  Google Scholar 

  134. Lane DP, Cheok CF, Lain S. p53-based cancer therapy. Cold Spring Harb Perspect Biol. 2010;2(9):a001222.

    PubMed  PubMed Central  Google Scholar 

  135. Hruban RH, Pitman MB, Klimstra DS. Tumors of the pancreas. Washington, DC: American Registry of Pathology; 2007.

    Google Scholar 

  136. Motojima K, Furui J, Terada M, Shiogama T, Kohara N, Tsunoda T, Tsuchiya R. Small cell carcinoma of the pancreas and biliary tract. J Surg Oncol. 1990;45(3):164–8.

    CAS  PubMed  Google Scholar 

  137. Ducreux M, Seufferlein T, Van Laethem JL, et al. Systemic treatment of pancreatic cancer revisited. Semin Oncol. 2019;46(1):28–38.

    CAS  PubMed  Google Scholar 

  138. Uccella S, La Rosa S. Looking into digestive mixed neuroendocrine-nonneuroendocrine neoplasm: subtypes, prognosis, and predictive factors. Histopathology. 2020; https://doi.org/10.1111/his.14178.

  139. de Mestier L, Cros J, Neuzillet C, Hentic O, Egal A, Muller N, Bouché O, Cadiot G, Ruszniewski P, Couvelard A, Hammel P. Digestive system mixed neuroendocrine-non-neuroendocrine neoplasms. Neuroendocrinology. 2017;105:412–25. https://doi.org/10.1159/000475527.

    Article  CAS  PubMed  Google Scholar 

  140. Frizziero M, Chakrabarty B, et al. Mixed neuroendocrine non-neuroendocrine neoplasms: a systematic review of a controversial and underestimated diagnosis. J Clin Med. 2020;9:273. https://doi.org/10.3390/jcm9010273.

    Article  PubMed Central  Google Scholar 

  141. Frizziero M, Wang X, et al. Retrospective study of mixed neuroendocrine non-neuroendocrine neoplasms from five European centres. World J Gastroenterol. 2019;25(39):5991–6005. https://doi.org/10.3748/WJG.v25.i39.5991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bazerbachi F, Kermanshahi TR, et al. Early precursor of mixed endocrine-exocrine tumors of the gastrointestinal tract: histologic and molecular correlations. Ochsner J. 2015;15:97–101.

    PubMed  PubMed Central  Google Scholar 

  143. Hirata K, Kuwatani M, Mitsuhashi T, et al. Mixed ductal-neuroendocrine carcinoma with unique intraductal growth in the main pancreatic duct. Endosc Ultrasound. 2019;8(2):129–30. https://doi.org/10.4103/eus.eus_12_18.

    Article  PubMed  Google Scholar 

  144. Xenaki S, Lasithiotakis K, Andreou A, et al. A rare case of mixed neuroendocrine tumor and adenocarcinoma of the pancreas. Case Rep Surg. 2016;2016:3240569. https://doi.org/10.1155/2016/3240569.

    Article  PubMed  PubMed Central  Google Scholar 

  145. La Rosa S, Sessa F, Uccella S. Mixed neuroendocrine-non-neuroendocrine neoplasms (MiNEN): unifying the concept of a heterogeneous group of neoplasms. Endocr Pathol. 2016;27:284–311.

    PubMed  Google Scholar 

  146. La Rosa S, Adsay V, et al. Clinicopathologic study of 62 acinar cell carcinomas of the pancreas: insights into the morphology and immunophenotype and search for prognostic markers. Am J Surg Pathol. 2012;36:1782–95.

    PubMed  Google Scholar 

  147. Nie L, Li M, He X, Feng A, Wu H, Fan X. Gastric mixed adenoneuroendocrine carcinoma: correlation of histologic characteristics with prognosis. Ann Diagn Pathol. 2016;25:48–53.

    PubMed  Google Scholar 

  148. Park JY, Ryu MH, Park YS, Park HJ, Ryoo BY, Kim MG, Yook JH, Kim BS, Kang YK. Prognostic significance of neuroendocrine components in gastric carcinomas. Eur J Cancer. 2014;50(16):2802–9.

    CAS  PubMed  Google Scholar 

  149. La Rosa S, Rigoli E, Uccella S, Chiaravalli AM, Capella C. CDX2 as a marker of intestinal EC-cells and related well-differentiated endocrine tumors. Virchows Arch. 2004;445(3):248–54.

    CAS  PubMed  Google Scholar 

  150. Erickson LA, Papouchado B, Dimashkieh H, Zhang S, Nakamura N, Lloyd RV. Cdx2 as a marker for neuroendocrine tumors of unknown primary sites. Endocr Pathol. 2004;15(3):247–52.

    CAS  PubMed  Google Scholar 

  151. Sangoi AR, Ohgami RS, Pai RK, Beck AH, McKenney JK, Pai RK. PAX8 expression reliably distinguishes pancreatic well-differentiated neuroendocrine tumors from ileal and pulmonary well-differentiated neuroendocrine tumors and pancreatic acinar cell carcinoma. Mod Pathol. 2011;24(3):412–24.

    CAS  PubMed  Google Scholar 

  152. Long KB, Srivastava A, Hirsch MS, Hornick JL. PAX8 Expression in well-differentiated pancreatic endocrine tumors: correlation with clinicopathologic features and comparison with gastrointestinal and pulmonary carcinoid tumors. Am J Surg Pathol. 2010;34(5):723–9.

    PubMed  Google Scholar 

  153. La Rosa S, Chiaravalli AM, Placidi C, Papanikolaou N, Cerati M, Capella C. TTF1 expression in normal lung neuroendocrine cells and related tumors: immunohistochemical study comparing two different monoclonal antibodies. Virchows Arch. 2010;457(4):497–507.

    PubMed  Google Scholar 

  154. Uccella S, Sessa F, La Rosa S. Diagnostic approach to neuroendocrine neoplasms of the gastrointestinal tract and pancreas. Turk Patoloji Derg. 2015;31(Suppl 1):113–27.

    PubMed  Google Scholar 

  155. Fujita Y, Uesugi N, Sugimoto R, Eizuka M, Matsumoto T, Sugai T. Gastric mixed neuroendocrine-non-neuroendocrine neoplasm (MiNEN) with pancreatic acinar differentiation: a case report. Diagn Pathol. 2019;14(1):38.

    PubMed  PubMed Central  Google Scholar 

  156. Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science. 1996;274(5295):2057–9.

    CAS  PubMed  Google Scholar 

  157. Bergmann F, Aulmann S, Sipos B, Kloor M, von Heydebreck A, Schweipert J, et al. Acinar cell carcinomas of the pancreas: a molecular analysis in a series of 57 cases. Virchows Arch. 2014;465:661–72.

    CAS  PubMed  Google Scholar 

  158. Service FJ, McMahon MM, O’Brien PC, Ballard DJ. Functioning insulinoma – incidence, recurrence, and long-term survival of patients: a 60-year study. Mayo Clin Proc. 1991;66:711–9. Defines the incidence and long-term outcome of sporadic and multiple endocrine neoplasia type (MEN)-1 associated insulinoma.

    CAS  PubMed  Google Scholar 

  159. Grant CS. Insulinoma. Best Pract Res Clin Gastroenterol. 2005;19:783–98.

    CAS  PubMed  Google Scholar 

  160. Mehrabi A, Fischer L, Hafezi M, Dirlewanger A, Grenacher L, Diener MK, Fonouni H, Golriz M, Garoussi C, Fard N, Rahbari NN, Werner J, Büchler MW. A systematic review of localization, surgical treatment options, and outcome of insulinoma. Pancreas. 2014;43(5):675–86. https://doi.org/10.1097/MPA.0000000000000110. PMID: 24921202.

    Article  PubMed  Google Scholar 

  161. Zhuo F, Anastasopoulou C. Insulinoma. [Updated 2020 Jun 27]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544299/.

    Google Scholar 

  162. Shin JJ. Insulinoma: pathophysiology, localization and management. Future Oncol. 2010;6(2):229–37. https://doi.org/10.2217/fon.09.165.

    Article  CAS  PubMed  Google Scholar 

  163. Tran TH, Pathak RD, Basa AL. Metastatic insulinoma: case report and review of the literature. South Med J. 2004;97(2):199–201. https://doi.org/10.1097/01.SMJ.0000091035.18498.47.

    Article  PubMed  Google Scholar 

  164. Baldelli R, Ettorre G, Vennarecci G, Pasimeni G, Carboni F, Lorusso R, Barnabei A, Appetecchia M. Malignant insulinoma presenting as metastatic liver tumor. Case report and review of the literature. J Exp Clin Cancer Res. 2007;26(4):603–7.

    CAS  PubMed  Google Scholar 

  165. Falconi M, Eriksson B, Kaltsas G, et al. ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology. 2016;103(2):153–71. https://doi.org/10.1159/000443171.

    Article  CAS  PubMed  Google Scholar 

  166. Bourcier ME, Sherrod A, DiGuardo M, et al. Successful control of intractable hypoglycemia using rapamycin in an 86-year-old man with a pancreatic insulin-secreting islet cell tumor and metastases. J Clin Endocrinol Metab. 2009;94:3157–62.

    CAS  PubMed  Google Scholar 

  167. Ong GS, Henley DE, Hurley D, et al. Therapies for the medical management of persistent hypoglycaemia in two cases of inoperable malignant insulinoma. Eur J Endocrinol. 2010;162:1001–8.

    CAS  PubMed  Google Scholar 

  168. Pauwels E, Cleeren F, Bormans G, Deroose CM. Somatostatin receptor PET ligands – the next generation for clinical practice. Am J Nucl Med Mol Imaging. 2018;8(5):311–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Christ E, Antwi K, Fani M, Wild D. Innovative imaging of insulinoma: the end of sampling? A review. Endocr Relat Cancer. 2020;27(4):R79–92. https://doi.org/10.1530/ERC-19-0476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Vinik A, Perry RR, Casellini C, Hughes MS, Feliberti E. Pathophysiology and treatment of pancreatic neuroendocrine tumors (PNETs): new developments. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext. South Dartmouth: MDText.com, Inc.; 2018.

    Google Scholar 

  171. Mei M, Deng D, Liu TH, et al. Clinical implications of microsatellite instability and MLH1 gene inactivation in sporadic insulinomas. J Clin Endocrinol Metab. 2009;94:3448–57.

    CAS  PubMed  Google Scholar 

  172. Goto Y, De Silva MG, Toscani A, Prabhakar BS, Notkins AL, Lan MS. A novel human insulinoma-associated cDNA, IA-1, encodes a protein with "zinc-finger" DNA-binding motifs. J Biol Chem. 1992;267(21):15252–7.

    CAS  PubMed  Google Scholar 

  173. Chen C, Notkins AL, Lan MS. Insulinoma-associated-1: from neuroendocrine tumor marker to cancer therapeutics. Mol Cancer Res. 2019;17(8):1597–604.

    CAS  PubMed  Google Scholar 

  174. Tseng AW, Chen C, Breslin MB, Lan MS. Tumor-specific promoter-driven adenoviral therapy for insulinoma. Cell Oncol (Dordr). 2016;39(3):279–86.

    CAS  Google Scholar 

  175. Akerstrom V, Chen C, Lan MS, Breslin MB. Adenoviral insulinoma-associated protein 1 promoter-driven suicide gene therapy with enhanced selectivity for treatment of neuroendocrine cancers. Ochsner J. 2013;13(1):91–9.

    PubMed  PubMed Central  Google Scholar 

  176. Ro C, Chai W, Yu VE, Yu R. Pancreatic neuroendocrine tumors: biology, diagnosis, and treatment. Chin J Cancer. 2013;32(6):312–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang WD, et al. Clinical treatment of gastrinoma: a case report and review of the literature. Oncol Lett. 2016;11:3433–7. https://doi.org/10.3892/ol.2016.4397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, Conte-Devolx B, Falchetti A, Gheri RG, Libroia A, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab. 2001;86:5658–71.

    CAS  PubMed  Google Scholar 

  179. Gibril F, Jensen RT. Zollinger-Ellison syndrome revisited: diagnosis, biologic markers, associated inherited disorders, and acid hypersecretion. Curr Gastroenterol Rep. 2004;6:454–63.

    PubMed  Google Scholar 

  180. Berna MJ, Hoffmann KM, Serrano J, et al. Serum gastrin in Zollinger-Ellison syndrome: I. Prospective study of fasting serum gastrin in 309 patients from the National Institutes of Health and comparison with 2229 cases from the literature. Medicine (Baltimore). 2006;85:295–330.

    CAS  Google Scholar 

  181. Lee L, Ito T, Jensen RT. Imaging of pancreatic neuroendocrine tumors: recent advances, current status, and controversies. Expert Rev Anticancer Ther. 2018;18(9):837–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Anlauf M, Enosawa T, Henopp T, Schmitt A, Gimm O, Brauckhoff M, Dralle H, Musil A, Hauptmann S, Perren A, Klöppel G. Primary lymph node gastrinoma or occult duodenal microgastrinoma with lymph node metastases in a MEN1 patient: the need for a systematic search for the primary tumor. Am J Surg Pathol. 2008;32(7):1101–5. https://doi.org/10.1097/PAS.0b013e3181655811.

    Article  PubMed  Google Scholar 

  183. Gurevich L, Kazantseva I, Isakov VA, Korsakova N, Egorov A, Kubishkin V, Bulgakov G. The analysis of immunophenotype of gastrin-producing tumors of the pancreas and gastrointestinal tract. Cancer. 2003;98(9):1967–76. https://doi.org/10.1002/cncr.11739.

    Article  PubMed  Google Scholar 

  184. Bonnavion R, Teinturier R, Jaafar R, et al. Islet cells serve as cells of origin of pancreatic gastrin-positive endocrine tumors. Mol Cell Biol. 2015;35:3274–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Lewis RB, Lattin GE, Paal E. Pancreatic endocrine tumors: radiologic-clinicopathologic correlation. Radiographics. 2010;30:1445–64.

    PubMed  Google Scholar 

  186. Mekhjian HS, O’Dorisio TM. VIPoma syndrome. Semin Oncol. 1987;14(3):282–91.

    CAS  PubMed  Google Scholar 

  187. Anderson CW, Bennett JJ. Clinical presentation and diagnosis of pancreatic neuroendocrine tumors. Surg Oncol Clin N Am. 2016;25:363–74.

    PubMed  Google Scholar 

  188. Schizas D, Mastoraki A, Bagias G, Patras R, Moris D, Lazaridis II, Arkadopoulos N, Felekouras E. Clinicopathological data and treatment modalities for pancreatic vipomas: a systematic review. J BUON. 2019;24(2):415–23.

    PubMed  Google Scholar 

  189. Nilibol N, et al. Pancreatic neuroendocrine tumor secreting vasoactive intestinal peptide and dopamine with pulmonary emboli: a case report. J Clin Endocrinol Metab. 2016;101(10):3564–7. https://doi.org/10.1210/jc.2016-2051.

    Article  CAS  Google Scholar 

  190. Grozinsky-Glasberg S, Mazeh H, Gross DJ. Clinical features of pancreatic neuroendocrine tumors. J Hepatobiliary Pancreat Sci. 2015;22(8):578–85. https://doi.org/10.1002/jhbp.226. Epub 2015 Feb 17

    Article  PubMed  Google Scholar 

  191. Song S, Shi R, Li B, et al. Diagnosis and treatment of pancreatic vasoactive intestinal peptide endocrine tumors. Pancreas. 2009;38:811–4.

    PubMed  Google Scholar 

  192. Müller S, Kupka S, Königsrainer I, Northoff H, Sotlar K, Bock T, Kandolf R, Traub F, Königsrainer A, Zieker D. MSH2 and CXCR4 involvement in malignant VIPoma. World J Surg Oncol. 2012;10:264. https://doi.org/10.1186/1477-7819-10-264. PMID: 23231927; PMCID: PMC3544679.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Dinc B, Shin C. Metastatic glucagonoma. Eurasian J Med. 2009;41:70–2.

    PubMed  PubMed Central  Google Scholar 

  194. John A, Schwartz R. Glucagonoma syndrome: a review and update on treatment. J Eur Acad Dermatol Venereol. 2016;30:2016–22. https://doi.org/10.1111/jdv.13752.

    Article  CAS  PubMed  Google Scholar 

  195. Rottenburger C, Papantoniou D, Mandair D, Caplin M, Navalkissoor SP. A case series of molecular imaging of glucagonoma after initial therapy – 68Ga-DOTATATE PET/CT reveals similar results as in neuroendocrine tumors of other origin in follow-up and re-evaluation. Clin Nucl Med. 2018;43(4):252–5. https://doi.org/10.1097/RLU.0000000000002005.

    Article  PubMed  Google Scholar 

  196. Gild ML, Tsang V, Samra J, Clifton-Bligh RJ, Tacon L, Gill AJ. Hypercalcemia in glucagon cell hyperplasia and neoplasia (Mahvash syndrome): a new association. J Clin Endocrinol Metab. 2018;103(9):3119–23. https://doi.org/10.1210/jc.2018-01074.

    Article  PubMed  Google Scholar 

  197. Grozinsky-Glasberg S, Shimon I, Korbonits M, Grossman AB. Somatostatin analogues in the control of neuroendocrine tumours: efficacy and mechanisms. Endocr Relat Cancer. 2008;15(3):701–20.

    CAS  PubMed  Google Scholar 

  198. Castro PG, de Leon AM, Trancon JG, et al. Glucagonoma syndrome: a case report. J Med Case Rep. 2011;5:402.

    PubMed  PubMed Central  Google Scholar 

  199. Glenn ST, Jones CA, Sexton S, et al. Conditional deletion of p53 and Rb in the renin-expressing compartment of the pancreas leads to a highly penetrant metastatic pancreatic neuroendocrine carcinoma. Oncogene. 2014;33:5706–15.

    CAS  PubMed  Google Scholar 

  200. Nesi G, Marcucci T, Rubio CA, et al. Somatostatinoma: clinico-pathological features of three cases and literature reviewed. J Gastroenterol Hepatol. 2008;23(4):521–6.

    CAS  PubMed  Google Scholar 

  201. Elangovan A, Zulfiqar H. Somatostatinoma. NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2020.

    Google Scholar 

  202. Soga J, Yakuwa Y. Somatostatinoma/inhibitory syndrome: a statistical evaluation of 173 reported cases as compared to other pancreatic endocrinomas. J Exp Clin Cancer Res. 1999;18(1):13–22.

    CAS  PubMed  Google Scholar 

  203. Levy-Bohbot N, Merle C, Goudet P, et al. Prevalence, characteristics and prognosis of MEN-1-associated glucagonomas, VIPomas, and somatostatinomas: study from the GTE (Groupe des Tumeurs Endocrines) registry. Gastroenterol Clin Biol. 2004;28(11):1075–81.

    PubMed  Google Scholar 

  204. Konomi K, Chijiwa K, Katsuta T, et al. Pancreatic somatostatinoma: a case report and review of the literature. J Surg Oncol. 1990;43(4):259–65.

    CAS  PubMed  Google Scholar 

  205. Dayal Y, Oberg K, Perren A, Komminoth P. Pancreatic endocrine tumours: somatostatinoma. In: De Lellis RA, Lloyd RV, Heitz PU, Eng C, editors. World Health Organization Classification of tumours. Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press; 2004.

    Google Scholar 

  206. Singhi AD, Adsay NV, Sasano H. Somatostatinoma. In: Digestive system WHO classification of tumours, vol. 1. 5th ed. WHO Classification of Tumours Editorial Board Publication; Lyon, 2019. p. 361.

    Google Scholar 

  207. Davì MV, Toiari M, Francia G. Epidemiology and clinical presentation. In: Pederzoli P, Bassi C, editors. Chap 7 in uncommon pancreatic neoplasms. Updates in surgery series 2012. Springer, Berlin.

    Google Scholar 

  208. Mori Y, Sato N, Taniguchi R, et al. Pancreatic somatostatinoma diagnosed preoperatively: report of a case. JOP. 2014;15(1):66–71.

    PubMed  Google Scholar 

  209. Zhang B, Xie QP, Gao SL, et al. Pancreatic somatostatinoma with obscure inhibitory syndrome and mixed pathological pattern. J Zhejiang Univ Sci B. 2010;11(1):22–6.

    PubMed  PubMed Central  Google Scholar 

  210. Lorenzo FR, Yang C, Tang N, et al. A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. J Mol Med. 2013;91:507–12.

    CAS  PubMed  Google Scholar 

  211. Yang C, Sun MG, Matro J, et al. Novel HIF2A mutations disrupt oxygen sensing, leading to polycythemia, paragangliomas, and somatostatinomas. Blood. 2013;121:2563–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Buffet A, Smati S, Mansuy L, et al. Mosaicism in HIF2Arelated polycythemia-paraganglioma syndrome. J Clin Endocrinol Metab. 2014;99:e396–473.

    Google Scholar 

  213. Zimmer M, Ebert BL, Neil C, Brenner K, Papaioannou I, Melas A, Tolliday N, Lamb J, Pantopoulos K, Golub T, Iliopoulos O. Small-molecule inhibitors of HIF-2a translation link its 5'UTR iron-responsive element to oxygen sensing. Mol Cell. 2008;32(6):838–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Sundaram V, Schuster DP, Falko JM. Unusual manifestations of Cushing’s syndrome in a multiple endocrine neoplasia type I kindred. Endocr Pract. 1998;4(4):190–4.

    CAS  PubMed  Google Scholar 

  215. Maragliano R, Vanoli A, Albarello L, et al. ACTH-secreting pancreatic neoplasms associated with Cushing syndrome: clinicopathologic study of 11 cases and review of the literature. Am J Surg Pathol. 2015;39:374–82.

    PubMed  Google Scholar 

  216. Clark ES, Carney JA. Pancreatic islet cell tumor associated with Cushing’s syndrome. Am J Surg Pathol. 1984;8:917–24.

    CAS  PubMed  Google Scholar 

  217. Doppman JL, Nieman LK, Cutler GN Jr, et al. Adrenocorticotropic hormone – secreting islet cell tumors: are they always malignant? Radiology. 1994;190:59–64.

    CAS  PubMed  Google Scholar 

  218. Oliver RL, Davis JR, White A. Characterisation of ACTH related peptides in ectopic Cushing’s syndrome. Pituitary. 2003;6(3):119–26.

    CAS  PubMed  Google Scholar 

  219. Park SY, Rhee Y, Youn JC, et al. Ectopic Cushing’s syndrome due to concurrent corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) secreted by malignant gastrinoma. Exp Clin Endocrinol Diabetes. 2007;115(1):13–6.

    CAS  PubMed  Google Scholar 

  220. Raddatz D, Horstmann O, Basenau D, et al. Cushing’s syndrome due to ectopic adrenocorticotropic hormone production by a non-metastatic gastrinoma after long-term conservative treatment of Zollinger-Ellison syndrome. Ital J Gastroenterol Hepatol. 1998;30(6):636–40.

    CAS  PubMed  Google Scholar 

  221. Celio MR, Pasi A, Bürgisser E, et al. Proopiocortin fragments’ in normal human adult pituitary. Distribution and ultrastructural characterization of immunoreactive cells. Acta Endocrinol. 1980;95(1):27–40.

    CAS  Google Scholar 

  222. De Herder WW, Lamberts SW. Octapeptide somatostatin-analogue therapy of Cushing’s syndrome. Postgrad Med J. 1999;75(880):65–6.

    PubMed  Google Scholar 

  223. Doi M, Imai T, Shichiri M, et al. Octreotide-sensitive ectopic ACTH production by islet cell carcinoma with multiple liver metastases. Endocr J. 2003;50(2):135–43.

    CAS  PubMed  Google Scholar 

  224. La Rosa S, Franzi F, Albarello L, et al. Serotonin-producing enterochromaffin cell tumors of the pancreas: clinicopathologic study of 15 cases and comparison with intestinal enterochromaffin cell tumors. Pancreas. 2011;40(6):883–95.

    PubMed  Google Scholar 

  225. Kim JY, Kim MS, Kim KS, et al. Clinicopathologic and prognostic significance of multiple hormone expression in pancreatic neuroendocrine tumors. Am J Surg Pathol. 2015;39(5):592–601.

    PubMed  Google Scholar 

  226. McCall CM, Shi C, Klein AP, et al. Serotonin expression in pancreatic neuroendocrine tumors correlates with a trabecular histologic pattern and large duct involvement. Hum Pathol. 2012;43(8):1169–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Tsoukalas N, Chatzellis E, Rontogianni D, et al. Pancreatic carcinoids (serotonin-producing pancreatic neuroendocrine neoplasms) report of 5 cases and review of the literature. Medicine (Baltimore). 2017;96(16):e6201.

    Google Scholar 

  228. Zavras N, Schizas D, Machairas N, et al. Carcinoid syndrome from a carcinoid tumor of the pancreas without liver metastases: a case report and literature review. Oncol Lett. 2017;13(4):2273–6.

    Google Scholar 

  229. Chapter 12 Endocrine neoplasms, p. 287. In: Hruban RH, Bishop Pitman M, Klimstra DS. Tumors of the pancreas. 2007 AFIP Atlas of tumor pathology series 4.

    Google Scholar 

  230. Maurer CA, Baer HU, Dyong TH, et al. Carcinoid of the pancreas, clinical characteristics and morphological features. Eur J Cancer. 1996;32A(7):1109–16.

    CAS  PubMed  Google Scholar 

  231. Soga J. Carcinoids of the pancreas: an analysis of 156 cases. Cancer. 2005;104(6):1180–7.

    PubMed  Google Scholar 

  232. Chap 12 Endocrine neoplasms, p. 288. In: Hruban RH, Bishop Pitman M, Klimstra DS. Tumors of the Pancreas. 2007 AFIP Atlas of tumor pathology series 4.

    Google Scholar 

  233. Heitz PU, Komminoth P, Perren A, et al. Pancreatic endocrine tumours: introduction. In: De Lellis RA, Lloyd RV, Heitz PU, Eng C, editors. World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press; 2004. p. 177–82.

    Google Scholar 

  234. Soga J, Yakuwa Y. Pancreatic polypeptide (PP)-producing tumors (PPomas): a review of the literature and statistical analysis of 58 cases. J Hepato-Biliary-Pancreat Surg. 1994;1:556–63.

    Google Scholar 

  235. Tomita T, Kimmel JR, Friesen SR, Doull V, Pollock HG. Pancreatic polypeptide in islet cell tumors. Morphologic and functional correlations. Cancer. 1985;56:1649–57.

    CAS  PubMed  Google Scholar 

  236. Braga TL, Santos-Oliveira R. PPoma review: epidemiology, aetiopathogenesis. Prognosis Treat Dis. 2018;6:8. https://doi.org/10.3390/diseases6010008.

    Article  CAS  Google Scholar 

  237. Ilić I, Katić V, Randjelović P, Stojanović N, Antovic A, Ilić R. Pancreatic polypeptide-secreting tumour of the proximal pancreas (PPoma) – ultra rare pancreatic tumour: clinically malign, histologically benign. Medicina. 2019;55:523. https://doi.org/10.3390/medicina55090523.

    Article  PubMed Central  Google Scholar 

  238. Chap 12 Endocrine neoplasms, p. 286–7. In: Hruban RH, Bishop Pitman M, Klimstra DS. Tumors of the pancreas. 2007 AFIP atlas of tumor pathology series 4.

    Google Scholar 

  239. Brierly JD, Gospodarowicz MK, Wittekind C, editors. TNM classification of malignant tumours. 8th ed. Wiley Blackwell: Oxford, UK; 2017.

    Google Scholar 

  240. Chun YS, Pawlik TM, Vaulthey JN. 8th edition of AJCC cancer staging manual: pancreas and hepatobiliary cancers. Ann Surg Oncol. 2018;25(4):845–7.

    PubMed  Google Scholar 

  241. Jensen RT, Cadiot G, Brandi ML, de Herder WW, Kaltsas G, Komminoth P, Scoazec JY, Salazar R, Sauvanet A, Kianmanesh R, Barcelona Consensus Conference Participants. ENETS consensus guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology. 2012;95(2):98–119. https://doi.org/10.1159/000335591. Epub 2012 Feb 15. PMID: 22261919; PMCID: PMC3701449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Bilimoria KY, Bentrem DJ, Merkow RP, et al. Application of the pancreatic adenocarcinoma staging system to pancreatic neuroendocrine tumors. J Am Coll Surg. 2007;205:558–63.

    PubMed  Google Scholar 

  243. Wermers RA, Fatourechi V, Wynne AG, et al. The glucagonoma syndrome. Clinical and pathologic features in 21 patients. Medicine (Baltimore). 1996;75:53–63.

    CAS  Google Scholar 

  244. Alexandraki KI, Grossman AB. Ectopic ACTH syndrome. Rev Endocr Metab Disord. 2010;11(2):117–26.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Borri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Borri, F., Bonfiglio, R., Mandarano, M. (2021). Pathology of Pancreatic Neuroendocrine Tumors. In: Doria, C., Rogart, J.N. (eds) Hepato-Pancreato-Biliary Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-37482-2_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37482-2_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37482-2

  • Online ISBN: 978-3-030-37482-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics