Skip to main content

Nanoremediation and Nanobioremediation in Water Treatment: The Search for an Eco-friendly Alternative

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications
  • 231 Accesses

Abstract

In the last decades, the worldwide industrial activity has increased exponentially and with it the destruction and pollution of the environment. Water from seas and rivers has been especially polluted due to effluents coming from several industries, such as mining, tannery, metallurgical, and electroplating. These effluents contain a great variety of heavy metals: lead, chromium, cadmium, copper, zinc, nickel, mercury, among others. Different removal methods have been used, such as ion exchange, solvent extraction, electrochemical treatment, ultrafiltration, and chemical precipitation; however, most of these are not suitable for the aqueous medium, are not cost-effective, and require high energy to be carried out. Adsorption, on the contrary, is an efficient and low cost technique that can be reversible because some of the adsorbents can be regenerated by desorption. Other eco-friendly and low-cost alternative is the bioremediation that uses material biological as adsorbent material in which a biosorption process takes place.

Within the remediation variants, there are two branches that have gained special attention in recent years: nanoremediation and nanobioremediation. The use of nanoparticles, in water treatment, provides certain advantages over traditional methods, due to its high surface area and reactivity. On the other hand, nanobioremediation is related to eco-friendly materials, which represents a big advantage over the remediation that uses oxide of metallic nanoparticles for the removal of heavy metals; however, the biological nanoparticles still present low removal efficiencies, compared with inorganic nanoparticles.

This chapter examines the advantages and disadvantages related to nanoremediation and nanobioremediation, from synthesis routes, efficiencies, and compatibility with the environment, to reuse capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Speight JG (2020) Sources of water pollution. In: Speight JGBT-NWR (ed) Nat. Water Remediat. Elsevier, Oxford, United Kingdom, pp 165–198

    Google Scholar 

  2. Zheng S, Wang Q, Yuan Y, Sun W (2020) Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chem 316:126213. https://doi.org/10.1016/j.foodchem.2020.126213

    Article  CAS  Google Scholar 

  3. Ma D, Su M, Qian J et al (2020) Heavy metal removal from sewage sludge under citric acid and electroosmotic leaching processes. Sep Purif Technol 242:116822. https://doi.org/10.1016/j.seppur.2020.116822

    Article  CAS  Google Scholar 

  4. Guerra F, Attia M, Whitehead D, Alexis F (2018) Nanotechnology for environmental remediation: materials and applications. Molecules 23:1760. https://doi.org/10.3390/molecules23071760

    Article  CAS  Google Scholar 

  5. Ossai IC, Ahmed A, Hassan A, Hamid FS (2020) Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov 17:100526. https://doi.org/10.1016/j.eti.2019.100526

    Article  Google Scholar 

  6. Gil-Díaz M, Rodríguez-Valdés E, Alonso J et al (2019) Nanoremediation and long-term monitoring of brownfield soil highly polluted with As and Hg. Sci Total Environ 675:165–175. https://doi.org/10.1016/j.scitotenv.2019.04.183

    Article  CAS  Google Scholar 

  7. Fajardo C, Sánchez-Fortún S, Costa G et al (2020) Evaluation of nanoremediation strategy in a Pb, Zn and Cd contaminated soil. Sci Total Environ 706:136041. https://doi.org/10.1016/j.scitotenv.2019.136041

    Article  CAS  Google Scholar 

  8. Vidmar J, Oprčkal P, Milačič R et al (2018) Investigation of the behaviour of zero-valent iron nanoparticles and their interactions with Cd2+ in wastewater by single particle ICP-MS. Sci Total Environ 634:1259–1268. https://doi.org/10.1016/j.scitotenv.2018.04.081

    Article  CAS  Google Scholar 

  9. Fang Y, Wen J, Zhang H et al (2020) Enhancing Cr(VI) reduction and immobilization by magnetic core-shell structured NZVI@MOF derivative hybrids. Environ Pollut 260:114021. https://doi.org/10.1016/j.envpol.2020.114021

    Article  CAS  Google Scholar 

  10. Su L, Zhen G, Zhang L et al (2015) The use of the core–shell structure of zero-valent iron nanoparticles (NZVI) for long-term removal of sulphide in sludge during anaerobic digestion. Environ Sci Process Impacts 17:2013–2021. https://doi.org/10.1039/C5EM00470E

    Article  CAS  Google Scholar 

  11. Mu Y, Jia F, Ai Z, Zhang L (2017) Iron oxide shell mediated environmental remediation properties of nano zero-valent iron. Environ Sci Nano 4:27–45. https://doi.org/10.1039/C6EN00398B

    Article  CAS  Google Scholar 

  12. Zhao C, Yang J, Wang Y, Jiang B (2017) Well-dispersed nanoscale zero-valent Iron supported in macroporous silica foams: synthesis, characterization, and performance in Cr(VI) removal. J Mater 2017:3094606. https://doi.org/10.1155/2017/3094606

    Article  CAS  Google Scholar 

  13. Ou J-H, Sheu Y-T, Tsang DCW et al (2020) Application of iron/aluminum bimetallic nanoparticle system for chromium-contaminated groundwater remediation. Chemosphere 256:127158. https://doi.org/10.1016/j.chemosphere.2020.127158

    Article  CAS  Google Scholar 

  14. Pasinszki T, Krebsz M (2020) Synthesis and application of zero-valent Iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nano 10:917. https://doi.org/10.3390/nano10050917

    Article  CAS  Google Scholar 

  15. Zhang B-T, Zheng X, Li H-F, Lin J-M (2013) Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta 784:1–17. https://doi.org/10.1016/j.aca.2013.03.054

    Article  CAS  Google Scholar 

  16. Zhu Y, Liu X, Hu Y et al (2019) Behavior, remediation effect and toxicity of nanomaterials in water environments. Environ Res 174:54–60. https://doi.org/10.1016/j.envres.2019.04.014

    Article  CAS  Google Scholar 

  17. Berradi M, Hsissou R, Khudhair M et al (2019) Textile finishing dyes and their impact on aquatic environs. Heliyon 5:e02711. https://doi.org/10.1016/j.heliyon.2019.e02711

    Article  Google Scholar 

  18. Ito T, Shimada Y, Suto T (2018) Potential use of bacteria collected from human hands for textile dye decolorization. Water Resour Ind 20:46–53. https://doi.org/10.1016/j.wri.2018.09.001

    Article  Google Scholar 

  19. Jha P, Jobby R, Desai NS (2016) Remediation of textile azo dye acid red 114 by hairy roots of Ipomoea carnea Jacq. and assessment of degraded dye toxicity with human keratinocyte cell line. J Hazard Mater 311:158–167. https://doi.org/10.1016/j.jhazmat.2016.02.058

    Article  CAS  Google Scholar 

  20. Ahsan MA, Jabbari V, Imam MA et al (2020) Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. Sci Total Environ 698:134214. https://doi.org/10.1016/j.scitotenv.2019.134214

    Article  CAS  Google Scholar 

  21. Jia J, Li T, Yao C et al (2020) Circulating differential miRNAs profiling and expression in hexavalent chromium exposed electroplating workers. Chemosphere 260:127546. https://doi.org/10.1016/j.chemosphere.2020.127546

    Article  CAS  Google Scholar 

  22. Panda A, Patra DK, Acharya S et al (2020) Assessment of the phytoremediation potential of Zinnia elegans L. plant species for hexavalent chromium through pot experiment. Environ Technol Innov 20:101042. https://doi.org/10.1016/j.eti.2020.101042

    Article  CAS  Google Scholar 

  23. Kullu B, Patra DK, Acharya S et al (2020) AM fungi mediated bioaccumulation of hexavalent chromium in Brachiaria mutica-a mycorrhizal phytoremediation approach. Chemosphere 258:127337. https://doi.org/10.1016/j.chemosphere.2020.127337

    Article  CAS  Google Scholar 

  24. Zhong G, Huang J, Yao Z et al (2020) Intrinsic acid resistance and high removal performance from the incorporation of nickel nanoparticles into nitrogen doped tubular carbons for environmental remediation. J Colloid Interface Sci 566:46–59. https://doi.org/10.1016/j.jcis.2020.01.055

    Article  CAS  Google Scholar 

  25. Chen Z, Mahmud S, Cai L et al (2020) Hierarchical poly(vinylidene fluoride)/active carbon composite membrane with self-confining functional carbon nanotube layer for intractable wastewater remediation. J Memb Sci 603:118041. https://doi.org/10.1016/j.memsci.2020.118041

    Article  CAS  Google Scholar 

  26. Yin Z, Song L, Song H et al (2020) Remediation of copper contaminated sediments by granular activated carbon-supported titanium dioxide nanoparticles: mechanism study and effect on enzyme activities. Sci Total Environ 741:139962. https://doi.org/10.1016/j.scitotenv.2020.139962

    Article  CAS  Google Scholar 

  27. Mandeep, Gulati A, Kakkar R (2020) Graphene-based adsorbents for water remediation by removal of organic pollutants: theoretical and experimental insights. Chem Eng Res Des 153:21–36. https://doi.org/10.1016/j.cherd.2019.10.013

    Article  CAS  Google Scholar 

  28. Nhlane D, Richards H, Etale A (2020) Facile and green synthesis of reduced graphene oxide for remediation of Hg(II)-contaminated water. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.04.163

  29. Khalifa AZ, Cizer Ö, Pontikes Y et al (2020) Advances in alkali-activation of clay minerals. Cem Concr Res 132:106050. https://doi.org/10.1016/j.cemconres.2020.106050

    Article  CAS  Google Scholar 

  30. Phuekphong AF, Imwiset KJ, Ogawa M (2020) Designing nanoarchitecture for environmental remediation based on the clay minerals as building block. J Hazard Mater 399:122888. https://doi.org/10.1016/j.jhazmat.2020.122888

    Article  Google Scholar 

  31. Carmona A, Malard V, Avazeri E et al (2018) Uranium exposure of human dopaminergic cells results in low cytotoxicity, accumulation within sub-cytoplasmic regions, and down regulation of MAO-B. Neurotoxicology 68:177–188. https://doi.org/10.1016/j.neuro.2018.07.019

    Article  CAS  Google Scholar 

  32. Stojsavljević A, Borković-Mitić S, Vujotić L et al (2019) The human biomonitoring study in Serbia: background levels for arsenic, cadmium, lead, thorium and uranium in the whole blood of adult Serbian population. Ecotoxicol Environ Saf 169:402–409. https://doi.org/10.1016/j.ecoenv.2018.11.043

    Article  CAS  Google Scholar 

  33. Diwan V, Sar SK, Biswas S, Lalwani R (2020) Adsorptive extraction of uranium(VI) from aqueous phase by dolomite. Groundw Sustain Dev 11:100424. https://doi.org/10.1016/j.gsd.2020.100424

    Article  Google Scholar 

  34. El-Maghrabi HH, Younes AA, Salem AR et al (2019) Magnetically modified hydroxyapatite nanoparticles for the removal of uranium (VI): preparation, characterization and adsorption optimization. J Hazard Mater 378:120703. https://doi.org/10.1016/j.jhazmat.2019.05.096

    Article  CAS  Google Scholar 

  35. Oulguidoum A, Bouyarmane H, Laghzizil A et al (2019) Development of sulfonate-functionalized hydroxyapatite nanoparticles for cadmium removal from aqueous solutions. Colloid Interface Sci Commun 30:100178. https://doi.org/10.1016/j.colcom.2019.100178

    Article  CAS  Google Scholar 

  36. Arenas-Lago D, Abreu MM, Andrade Couce L, Vega FA (2019) Is nanoremediation an effective tool to reduce the bioavailable As, Pb and Sb contents in mine soils from Iberian Pyrite Belt? Catena 176:362–371. https://doi.org/10.1016/j.catena.2019.01.038

    Article  CAS  Google Scholar 

  37. Liu X, Huang D, Lai C et al (2018) Recent advances in sensors for tetracycline antibiotics and their applications. TrAC Trends Anal Chem 109:260–274. https://doi.org/10.1016/j.trac.2018.10.011

    Article  CAS  Google Scholar 

  38. Lei X, Xu T, Yao W et al (2020) Hollow hydroxyapatite microspheres modified by CdS nanoparticles for efficiently photocatalytic degradation of tetracycline. J Taiwan Inst Chem Eng 106:148–158. https://doi.org/10.1016/j.jtice.2019.10.023

    Article  CAS  Google Scholar 

  39. Zeng Z, Fang S, Tang D et al (2019) Ultrasensitive sensor based on novel bismuth carbon nanomaterial for lead and cadmium determination in natural water, contaminated soil and human plasma. Microporous Mesoporous Mater 284:177–185. https://doi.org/10.1016/j.micromeso.2019.04.045

    Article  CAS  Google Scholar 

  40. Zhou C, Wang X, Song X et al (2020) Insights into dynamic adsorption of lead by nano-hydroxyapatite prepared with two-stage ultrasound. Chemosphere 253:126661. https://doi.org/10.1016/j.chemosphere.2020.126661

    Article  CAS  Google Scholar 

  41. Hayashi T, Nakamura K, Suzuki T et al (2020) OH radical formation by the photocatalytic reduction reactions of H2O2 on the surface of plasmonic excited Au-TiO2 photocatalysts. Chem Phys Lett 739:136958. https://doi.org/10.1016/j.cplett.2019.136958

    Article  CAS  Google Scholar 

  42. Shoueir K, Kandil S, El-hosainy H, El-Kemary M (2019) Tailoring the surface reactivity of plasmonic Au@TiO2 photocatalyst bio-based chitosan fiber towards cleaner of harmful water pollutants under visible-light irradiation. J Clean Prod 230:383–393. https://doi.org/10.1016/j.jclepro.2019.05.103

    Article  CAS  Google Scholar 

  43. Veziroglu S, Ullrich M, Hussain M et al (2020) Plasmonic and non-plasmonic contributions on photocatalytic activity of Au-TiO2 thin film under mixed UV–visible light. Surf Coatings Technol 389:125613. https://doi.org/10.1016/j.surfcoat.2020.125613

    Article  CAS  Google Scholar 

  44. Lin C, Ma J, Yi F et al (2020) Ag NPs modified plasmonic Z-scheme photocatalyst Bi4Ti3O12/Ag/Ag3PO4 with improved performance for pollutants removal under visible light irradiation. Ceram Int 46:14650–14661. https://doi.org/10.1016/j.ceramint.2020.02.266

    Article  CAS  Google Scholar 

  45. Wang D, Pillai SC, Ho S-H et al (2018) Plasmonic-based nanomaterials for environmental remediation. Appl Catal B Environ 237:721–741. https://doi.org/10.1016/j.apcatb.2018.05.094

    Article  CAS  Google Scholar 

  46. Patil SS, Shedbalkar UU, Truskewycz A et al (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21. https://doi.org/10.1016/j.eti.2015.11.001

    Article  Google Scholar 

  47. Basak G, Hazra C, Sen R (2020) Biofunctionalized nanomaterials for in situ clean-up of hydrocarbon contamination: a quantum jump in global bioremediation research. J Environ Manage 256:109913. https://doi.org/10.1016/j.jenvman.2019.109913

    Article  CAS  Google Scholar 

  48. Cecchin I, Reddy KR, Thomé A et al (2017) Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeterior Biodegradation 119:419–428. https://doi.org/10.1016/j.ibiod.2016.09.027

    Article  CAS  Google Scholar 

  49. Han B, Zhang M, Zhao D (2017) In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: column studies. Environ Pollut 223:238–246. https://doi.org/10.1016/j.envpol.2017.01.018

    Article  CAS  Google Scholar 

  50. Mandal SK, Ojha N, Das N (2018) Optimization of process parameters for the yeast mediated degradation of benzo[a]pyrene in presence of ZnO nanoparticles and produced biosurfactant using 3-level box-Behnken design. Ecol Eng 120:497–503. https://doi.org/10.1016/j.ecoleng.2018.07.006

    Article  Google Scholar 

  51. Darwesh OM, Matter IA, Eida MF (2019) Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. J Environ Chem Eng 7:102805. https://doi.org/10.1016/j.jece.2018.11.049

    Article  CAS  Google Scholar 

  52. Chatterjee S, Mahanty S, Das P et al (2020) Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution. Chem Eng J 385:123790. https://doi.org/10.1016/j.cej.2019.123790

    Article  CAS  Google Scholar 

  53. Bhattacharya P, Mukherjee D, Deb N et al (2020) Application of green synthesized ZnO nanoparticle coated ceramic ultrafiltration membrane for remediation of pharmaceutical components from synthetic water: reusability assay of treated water on seed germination. Heliyon 6:e04508. https://doi.org/10.1016/j.jece.2020.103803

    Article  CAS  Google Scholar 

  54. Akintelu SA, Folorunso AS, Folorunso FA, Oyebamiji AK (2020) Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 6:e04508. https://doi.org/10.1016/j.heliyon.2020.e04508

    Article  Google Scholar 

  55. Libralato G, Minetto D, Lofrano G et al (2018) Toxicity assessment within the application of in situ contaminated sediment remediation technologies: a review. Sci Total Environ 621:85–94. https://doi.org/10.1016/j.scitotenv.2017.11.229

    Article  CAS  Google Scholar 

  56. Huang Z, Zeng Z, Chen A et al (2018) Differential behaviors of silver nanoparticles and silver ions towards cysteine: bioremediation and toxicity to Phanerochaete chrysosporium. Chemosphere 203:199–208. https://doi.org/10.1016/j.chemosphere.2018.03.144

    Article  CAS  Google Scholar 

  57. Gholami F, Mosmeri H, Shavandi M et al (2019) Application of encapsulated magnesium peroxide (MgO2) nanoparticles in permeable reactive barrier (PRB) for naphthalene and toluene bioremediation from groundwater. Sci Total Environ 655:633–640. https://doi.org/10.1016/j.scitotenv.2018.11.253

    Article  CAS  Google Scholar 

  58. Fernando IPS, Lee W, Han EJ, Ahn G (2020) Alginate-based nanomaterials: fabrication techniques, properties, and applications. Chem Eng J 391:123823. https://doi.org/10.1016/j.cej.2019.123823

    Article  CAS  Google Scholar 

  59. Sargin I, Baran T, Arslan G (2020) Environmental remediation by chitosan-carbon nanotube supported palladium nanoparticles: conversion of toxic nitroarenes into aromatic amines, degradation of dye pollutants and green synthesis of biaryls. Sep Purif Technol 247:116987. https://doi.org/10.1016/j.seppur.2020.116987

    Article  CAS  Google Scholar 

  60. Nguyen NHA, Von Moos NR, Slaveykova VI et al (2018) Biological effects of four iron-containing nanoremediation materials on the green alga Chlamydomonas sp. Ecotoxicol Environ Saf 154:36–44. https://doi.org/10.1016/j.ecoenv.2018.02.027

    Article  CAS  Google Scholar 

  61. Corsi I, Winther-Nielsen M, Sethi R et al (2018) Ecofriendly nanotechnologies and nanomaterials for environmental applications: key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicol Environ Saf 154:237–244. https://doi.org/10.1016/j.ecoenv.2018.02.037

    Article  CAS  Google Scholar 

  62. Zhang Q, Wang M, Gu C, Zhang C (2019) Water disinfection processes change the cytotoxicity of C60 fullerene: reactions at the nano-bio interface. Water Res 163:114867. https://doi.org/10.1016/j.watres.2019.114867

    Article  CAS  Google Scholar 

  63. Kyzyma OA, Avdeev MV, Bolshakova OI et al (2019) State of aggregation and toxicity of aqueous fullerene solutions. Appl Surf Sci 483:69–75. https://doi.org/10.1016/j.apsusc.2019.03.167

    Article  CAS  Google Scholar 

  64. Sánchez A, Recillas S, Font X et al (2011) Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. TrAC Trends Anal Chem 30:507–516. https://doi.org/10.1016/j.trac.2010.11.011

    Article  CAS  Google Scholar 

  65. Tang F, Yu H, Yassin Hussain Abdalkarim S et al (2020) Green acid-free hydrolysis of wasted pomelo peel to produce carboxylated cellulose nanofibers with super absorption/flocculation ability for environmental remediation materials. Chem Eng J 395:125070. https://doi.org/10.1016/j.cej.2020.125070

    Article  CAS  Google Scholar 

  66. Choi HY, Bae JH, Hasegawa Y et al (2020) Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr Polym 234:115881. https://doi.org/10.1016/j.carbpol.2020.115881

    Article  CAS  Google Scholar 

  67. Darabitabar F, Yavari V, Hedayati A et al (2020) Novel cellulose nanofiber aerogel for aquaculture wastewater treatment. Environ Technol Innov 18:100786. https://doi.org/10.1016/j.eti.2020.100786

    Article  Google Scholar 

  68. Abu-Danso E, Peräniemi S, Leiviskä T, Bhatnagar A (2018) Synthesis of S-ligand tethered cellulose nanofibers for efficient removal of Pb(II) and Cd(II) ions from synthetic and industrial wastewater. Environ Pollut 242:1988–1997. https://doi.org/10.1016/j.envpol.2018.07.044

    Article  CAS  Google Scholar 

  69. Gomes MADC, Hauser-Davis RA, de Souza AN, Vitória AP (2016) Metal phytoremediation: general strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicol Environ Saf 134:133–147. https://doi.org/10.1016/j.ecoenv.2016.08.024

    Article  CAS  Google Scholar 

  70. Ebrahimbabaie P, Meeinkuirt W, Pichtel J (2020) Phytoremediation of engineered nanoparticles using aquatic plants: mechanisms and practical feasibility. J Environ Sci 93:151–163. https://doi.org/10.1016/j.jes.2020.03.034

    Article  Google Scholar 

  71. Fernandes JP, Mucha AP, Francisco T et al (2017) Silver nanoparticles uptake by salt marsh plants – implications for phytoremediation processes and effects in microbial community dynamics. Mar Pollut Bull 119:176–183. https://doi.org/10.1016/j.marpolbul.2017.03.052

    Article  CAS  Google Scholar 

  72. Fernandes JP, Almeida CMR, Andreotti F et al (2017) Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. Sci Total Environ 581–582:801–810. https://doi.org/10.1016/j.scitotenv.2017.01.015

    Article  CAS  Google Scholar 

  73. Hanks NA, Caruso JA, Zhang P (2015) Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters. J Environ Manage 164:41–45. https://doi.org/10.1016/j.jenvman.2015.08.026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

González, V. (2021). Nanoremediation and Nanobioremediation in Water Treatment: The Search for an Eco-friendly Alternative. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_28

Download citation

Publish with us

Policies and ethics