Skip to main content

Rheological Characterization Tools: A Review

  • Living reference work entry
  • First Online:
Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites

Abstract

Nanophase magnetic materials have been widely contemplated due to their widespread applications in diverse fields. Suspensions of the magnetic nanoparticles like ferrofluids or smart fluids show rapid and reversible transformation between a fluid-like to solid-like state within milliseconds by applying magnetic field. The suspensions of the magnetic nanoparticles show spectacular and tunable changes in rheological properties under the influence of the external applied magnetic field. “Smart fluids” has been an area of academic interest, research, and development that has gained widespread attention from the academic community over the past two decades. A glut of lively research endeavors is intended toward discovering “smarter” fluids’ and toward understanding their underlying physics. Such fluids involve magneto rheological (MR) fluids, electro rheological (ER) fluids, shear thickening fluids, thermo–nanofluids, optically smart fluids, ferrofluids, etc. Among these, MR and ER fluids have received a greater part of the attention owing to intensive earlier discoveries. The transition of the colloidal state from fluidic phase to soft condensed phase and its visco-elastic stimuli under the influence of magnetic field has been thoroughly studied and explained mathematically. The notable firmness, magnetic properties, and precise physical models reveal colloidal structure in transient situations viz. antiseismic damping, magneto–MEMS/ NEMS devices, biomedical invasive treatments, etc. In this chapter, a review of variety of nanoparticles with rheological properties is deliberated with an overview of current research activities on functional, magnetic nanocomposite materials, their methods currently used for nanoalloy and nanocomposite synthesis and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alexandre M, Pluta M, Dubois P, Jérôme R (2001) Metallocene catalyzed polymerization of ethylene in the presence of graphite, 1. Synthesis and characterization of the composites. Macromol Chem Phys 202(11):2239–2246

    Article  CAS  Google Scholar 

  • Antonietti M, Gröhn F, Hartmann J, Bronstein L (1997) Nonclassical shapes of noble-metal colloids by synthesis in microgel nanoreactors. Angew Chem Int Ed Engl 36(19):2080–2083

    Article  CAS  Google Scholar 

  • Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314(5802):1107–1110

    Article  CAS  Google Scholar 

  • Banert T, Peuker UA (2006) Preparation of highly filled super-paramagnetic PMMA-magnetite nano composites using the solution method. J Mater Sci 41(10):3051–3056

    Article  CAS  Google Scholar 

  • Bissessur R, Liu PK, White W, Scully SF (2006) Encapsulation of polyanilines into graphite oxide. Langmuir 22(4):1729–1734

    Article  CAS  Google Scholar 

  • Bong-Hyun J, Mi Suk N, Kim J, et al. (2010) Multifunctional Silver-Embedded Magnetic Nanoparticles as SERS Nanoprobes and Their Applications. Nano-Micro Small 6910:119–125

    Google Scholar 

  • Bossis G, Kuzhir P, Lopez-Lopez M, Meunier A, Magnet C (2013) Importance of interparticle friction and rotational diffusion to explain recent experimental results in the rheology of magnetic suspensions. Magnetorheol Adv Appl 6:1

    Google Scholar 

  • Brändel T, Sabadasch V, Hannappel Y, Hellweg T (2019) Improved smart microgel carriers for catalytic silver nanoparticles. ACS Omega 4(3):4636–4649

    Article  CAS  Google Scholar 

  • Breitung-Faes S, Kwade A (2008) Nano particle production in high-power-density mills. Chem Eng Res Des 86(4):390–394

    Article  CAS  Google Scholar 

  • Broza G, Kwiatkowska M, Rosłaniec Z, Schulte K (2005) Processing and assessment of poly (butylene terephthalate) nanocomposites reinforced with oxidized single wall carbon nanotubes. Polymer 46(16):5860–5867

    Article  CAS  Google Scholar 

  • Causin V, Marega C, Marigo A, Ferrara G, Ferraro A (2006) Morphological and structural characterization of polypropylene/conductive graphite nanocomposites. Eur Polym J 42(12):3153–3161

    Article  CAS  Google Scholar 

  • Chen L (2009) The development and mechanical characterization of magnetorheological elastomers (Doctoral dissertation, PhD Thesis, University of Science and Technology of China, Hefei, China)

    Google Scholar 

  • Chen GH, Wu DJ, Weng WG, He B, Yan WL (2001a) Preparation of polystyrene–graphite conducting nanocomposites via intercalation polymerization. Polym Int 50(9):980–985

    Article  CAS  Google Scholar 

  • Chen GH, Wu DJ, Weng WG, Yan WL (2001b) Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. J Appl Polym Sci 82(10):2506–2513

    Article  CAS  Google Scholar 

  • Chen G, Weng W, Wu D, Wu C (2003) PMMA/graphite nanosheets composite and its conducting properties. Eur Polym J 39(12):2329–2335

    Article  CAS  Google Scholar 

  • Choi SB, Nguyen PB, OHa, J. S. (2013) A novel medical haptic device using magneto-rheological fluid. Magnetorheol Adv Appl 6:363

    Article  Google Scholar 

  • Das M, Sanson N, Fava D, Kumacheva E (2007) Microgels loaded with gold nanorods: photothermally triggered volume transitions under physiological conditions. Langmuir 23(1):196–201

    Article  CAS  Google Scholar 

  • De Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Magnetorheological fluids: a review. Soft Matter 7(8):3701–3710

    Article  CAS  Google Scholar 

  • Díaz JE, Barrero A, Márquez M, Fernández-Nieves A, Loscertales IG (2010) Absorption properties of microgel-PVP composite nanofibers made by electrospinning. Macromol Rapid Commun 31(2):183–189

    Article  CAS  Google Scholar 

  • Dresco PA, Zaitsev VS, Gambino RJ, Chu B (1999) Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir 15(6):1945–1951

    Article  CAS  Google Scholar 

  • Echeverria C, Mijangos C (2010) Effect of gold nanoparticles on the thermosensitivity, morphology, and optical properties of poly (acrylamide–acrylic acid) microgels. Macromol Rapid Commun 31(1):54–58

    Article  CAS  Google Scholar 

  • Echeverria C, Mijangos C (2011) UCST-like hybrid PAAm-AA/Fe3O4 microgels. Effect of Fe3O4 nanoparticles on morphology, thermosensitivity and elasticity. Langmuir 27(13):8027–8035

    Article  CAS  Google Scholar 

  • Echeverria C, Lopez D, Mijangos C (2009) UCST responsive microgels of poly (acrylamide− acrylic acid) copolymers: structure and viscoelastic properties. Macromolecules 42(22):9118–9123

    Article  CAS  Google Scholar 

  • Echeverria C, Peppas NA, Mijangos C (2012) Novel strategy for the determination of UCST-like microgels network structure: effect on swelling behavior and rheology. Soft Matter 8(2):337–346

    Article  CAS  Google Scholar 

  • Echeverria C, Soares P, Robalo A, Pereira L, Novo CM, Ferreira I, Borges JP (2015) One-pot synthesis of dual-stimuli responsive hybrid PNIPAAm-chitosan microgels. Mater Des 86:745–751

    Article  CAS  Google Scholar 

  • Faria J, Echeverria C, Borges JP, Godinho MH, Soares PI (2017) Towards the development of multifunctional hybrid fibrillary gels: production and optimization by colloidal electrospinning. RSC Adv 7(77):48972–48979

    Article  CAS  Google Scholar 

  • Ferry JD (1961) Viscoelastic Properties of Polymers. Science 133(3460):1251

    Google Scholar 

  • Forster CF (2002) The rheological and physico-chemical characteristics of sewage sludges. Enzym Microb Technol 30(3):340–345

    Article  CAS  Google Scholar 

  • Fukushima T (2006) π-Electronic soft materials based on graphitic nanostructures. Polym J 38(8):743–756

    Article  CAS  Google Scholar 

  • Gan T, Zhang Y, Guan Y (2009) In situ gelation of P (NIPAM-HEMA) microgel dispersion and its applications as injectable 3D cell scaffold. Biomacromolecules 10(6):1410–1415

    Article  CAS  Google Scholar 

  • Gelissen AP, Schmid AJ, Plamper FA, Pergushov DV, Richtering W (2014) Quaternized microgels as soft templates for polyelectrolyte layer-by-layer assemblies. Polymer 55(8):1991–1999

    Article  CAS  Google Scholar 

  • Gennes PG (2001) Ultradivided matter. Nature 412(6845):385–385

    Article  Google Scholar 

  • Ginder JM, Davis LC, Elie LD (1996) Rheology of magnetorheological fluids: models and measurements. Int J Modern Phys B 10(23n24):3293–3303

    Article  CAS  Google Scholar 

  • Guibaud G, Tixier N, Baudu M (2005) Hysteresis area, a rheological parameter used as a tool to assess the ability of filamentous sludges to settle. Process Biochem 40(8):2671–2676

    Article  CAS  Google Scholar 

  • Hughes RW (2000) Rheology for chemists [Electronic book]: an introduction. Royal Society of Chemistry

    Google Scholar 

  • Jia S, Tang Z, Guan Y, Zhang Y (2018) Order–disorder transition in doped microgel colloidal crystals and its application for optical sensing. ACS Appl Mater Interfaces 10(17):14254–14258

    Article  CAS  Google Scholar 

  • Joshi A, Nandi S, Chester D, Brown AC, Muller M (2018) Study of poly (N-isopropylacrylamide-coacrylic acid) (pNIPAM) microgel particle induced deformations of tissue-mimicking phantom by ultrasound stimulation. Langmuir 34(4):1457–1465

    Article  CAS  Google Scholar 

  • Klingenberg DJ (2001) Magnetorheology: applications and challenges. Am Institute Chem Eng AICHE J 47(2):246

    Article  CAS  Google Scholar 

  • Koo JH (2006) Polymer nanocomposites. McGraw-Hill Professional Publishing, New York

    Google Scholar 

  • Krüger AJ, Köhler J, Cichosz S, Rose JC, Gehlen DB, Haraszti T, De Laporte L (2018) A catalyst-free, temperature-controlled gelation system for in-mold fabrication of microgels. Chem Commun 54(50):6943–6946

    Article  Google Scholar 

  • Lee CH, Jang MG (2011) Virtual surface characteristics of a tactile display using magneto-rheological fluids. Sensors 11(3):2845–2856

    Article  Google Scholar 

  • Leon AM, Aguilera JM, Park DJ (2019) Mechanical, rheological and structural properties of fiber-containing microgels based on whey protein and alginate. Carbohydr Polym 207:571–579

    Article  CAS  Google Scholar 

  • Liu G, Liu Z, Li N, Wang X, Zhou F, Liu W (2014) Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. ACS Appl Mater Interfaces 6(22):20452–20463

    Article  CAS  Google Scholar 

  • Lloyd, J. R., Hayesmichel, M. O., & Radcliffe, C. J. (2007). Internal organizational measurement for control of magnetorheological fluid properties

    Book  Google Scholar 

  • Lotito V, Spinosa L, Mininni G, Antonacci R (1997) The rheology of sewage sludge at different steps of treatment. Water Sci Technol 36(11):79–85

    Article  Google Scholar 

  • Lu J, Chen X, Lu W, Chen G (2006a) The piezoresistive behaviors of polyethylene/foliated graphite nanocomposites. Eur Polym J 42(5):1015–1021

    Article  CAS  Google Scholar 

  • Lu W, Lin H, Wu D, Chen G (2006b) Unsaturated polyester resin/graphite nanosheet conducting composites with a low percolation threshold. Polymer 47(12):4440–4444

    Article  CAS  Google Scholar 

  • Machunsky S, Grimm P, Schmid HJ, Peuker UA (2009) Liquid–liquid phase transfer of magnetite nanoparticles. Colloids Surf A Physicochem Eng Asp 348(1–3):186–190

    Article  CAS  Google Scholar 

  • Macosko CW (1994) Rheology principles. Measurements and Applications

    Google Scholar 

  • Madrigal JL, Sharma SN, Campbell KT, Stilhano RS, Gijsbers R, Silva EA (2018) Microgels produced using microfluidic on-chip polymer blending for controlled released of VEGF encoding lentivectors. Acta Biomater 69:265–276

    Article  CAS  Google Scholar 

  • Marques SC, Soares PI, Echeverria C, Godinho MH, Borges JP (2016) Confinement of thermoresponsive microgels into fibres via colloidal electrospinning: experimental and statistical analysis. RSC Adv 6(80):76370–76380

    Article  CAS  Google Scholar 

  • Muratalin M, Luckham PF, Esimova A, Aidarova S, Mutaliyeva B, Madybekova G et al (2017) Study of N-isopropylacrylamide-based microgel particles as a potential drug delivery agents. Colloids Surf A Physicochem Eng Asp 532:8–17

    Article  CAS  Google Scholar 

  • Palacios-Lidón E, Perez-García B, Abellan J, Miguel C, Urbina A, Colchero J (2006) Nanoscale characterization of the morphology and electrostatic properties of poly (3-octylthiophene)/graphite-nanoparticle blends. Adv Funct Mater 16(15):1975–1984

    Article  CAS  Google Scholar 

  • Park BO, Song KH, Park BJ, Choi HJ (2010a) Miniemulsion fabricated Fe 3 O 4/poly (methyl methacrylate) composite particles and their magnetorheological characteristics. J Appl Phys 107(9):09A506

    Article  CAS  Google Scholar 

  • Park BJ, Fang FF, Choi HJ (2010b) Magnetorheology: materials and application. Soft Matter 6(21):5246–5253

    Article  CAS  Google Scholar 

  • Park CW, South AB, Hu X, Verdes C, Kim JD, Lyon LA (2011) Gold nanoparticles reinforce self-healing microgel multilayers. Colloid Polym Sci 289(5):583–590

    Article  CAS  Google Scholar 

  • Peng J, Tang D, Jia S, Zhang Y, Sun Z, Yang X et al (2019) In situ thermal synthesis of molybdenum oxide nanocrystals in thermoresponsive microgels. Colloids Surf A Physicochem Eng Asp 563:130–140

    Article  CAS  Google Scholar 

  • Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM (2013) Multifunctionality in metal@ microgel colloidal nanocomposites. J Mater Chem A 1(1):20–26

    Article  Google Scholar 

  • Pevere A, Guibad G (2005) Viscosity evolution of anaerobic granular sludge. Biochem Engin Jour, pp. 315–322

    Google Scholar 

  • Pevere A, Guibaud G, Van Hullebusch E, Lens P, Baudu M (2006a) Viscosity evolution of anaerobic granular sludge. Biochem Eng J 27(3):315–322

    Article  CAS  Google Scholar 

  • Pevere A, Guibaud G, Van Hullebusch E, Lens P, Baudu M (2006b) Viscosity evolution of anaerobic granular sludge. Biochem Eng J 27(3):315–322

    Article  CAS  Google Scholar 

  • Phulé PP (1998) Synthesis of novel magnetorheological fluids. MRS Bull 23(8):23–25

    Article  Google Scholar 

  • Pötschke P, Dudkin SM, Alig I (2003) Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer 44(17):5023–5030

    Article  CAS  Google Scholar 

  • Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45(26):8863–8870

    Article  CAS  Google Scholar 

  • Sarasa M, Bosse M, Gerling D, Ziegmann G, Kastinger G (2004) Plastic moulded soft magnetic materials for electrical machines. In: Proceedings of the low voltage electrical machines conference

    Google Scholar 

  • Scarabelli L, Schumacher M, Jimenez de Aberasturi D, Merkl JP, Henriksen-Lacey M, Milagres de Oliveira T, Liz-Marzán LM (2019) Encapsulation of noble metal nanoparticles through seeded emulsion polymerization as highly stable plasmonic systems. Adv Funct Mater 29(14):1809071

    Article  CAS  Google Scholar 

  • Schramm, G. (2000). A practical approach to rheology and Rheometry. (R. Steinbrüggen, Trans.). Gebrueder HAAKE GmbH. Karlsruhe (RFA)

    Google Scholar 

  • Seyssiecq I, Ferrasse JH, Roche N (2003) State-of-the-art: rheological characterisation of wastewater treatment sludge. Biochem Eng J 16(1):41–56

    Article  CAS  Google Scholar 

  • Shen JW, Chen XM, Huang WY (2003) Structure and electrical properties of grafted polypropylene/graphite nanocomposites prepared by solution intercalation. J Appl Polym Sci 88(7):1864–1869

    Article  CAS  Google Scholar 

  • Shen J-W, Huang W-Y, Zuo S-W, Hou J (2005) J Appl Polym Sci 97:51–59

    Article  CAS  Google Scholar 

  • Shiga T, Okada A, Kurauchi T (1995) Magnetroviscoelastic behavior of composite gels. J Appl Polym Sci 58(4):787–792

    Article  CAS  Google Scholar 

  • Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158

    Article  CAS  Google Scholar 

  • Strozyk MS, Carregal-Romero S, Henriksen-Lacey M, Brust M, Liz-Marzán LM (2017) Biocompatible, multiresponsive nanogel composites for codelivery of antiangiogenic and chemotherapeutic agents. Chem Mater 29(5):2303–2313

    Article  CAS  Google Scholar 

  • Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55(1–2):22–45

    Article  CAS  Google Scholar 

  • Thorne JB, Vine GJ, Snowden MJ (2011) Microgel applications and commercial considerations. Colloid Polym Sci 289(5):625–646

    Article  CAS  Google Scholar 

  • Tixier N, Guibaud G, Baudu M (2003a) Determination of some rheological parameters for the characterization of activated sludge. Bioresour Technol 90(2):215–220

    Article  CAS  Google Scholar 

  • Tixier N, Guibaud G, Baudu M (2003b) Determination of some rheological parameters for the characterization of activated sludge. Bioresour Technol 90(2):215–220

    Article  CAS  Google Scholar 

  • Tracz A, Jeszka J, Kucińska I, Chapel JP, Boiteux G (2001) Nanoscale morphology of melt crystallized polyethylene/graphite (HOPG) interphase. In: Macromolecular symposia, vol 169, No. 1. WILEY-VCH Verlag GmbH, Weinheim, pp 129–135

    Google Scholar 

  • Wagenknecht U, Kretzschmar B, Pötschke P, Costa FR, Pegel S, Stöckelhuber KW, Heinrich G (2008) Polymere Nanokomposite mit anorganischen Funktionsfüllstoffen. Chemie Ingenieur Technik 80(11):1683–1699

    Article  CAS  Google Scholar 

  • Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14(1):23–36

    Article  CAS  Google Scholar 

  • Weng W, Chen G, Wu D, Chen X, Lu J, Wang P (2004) J Polym Sci B Polym Phys 42:2844–2856

    Article  CAS  Google Scholar 

  • Xian G, Walter R, Haupert F (2006) A synergistic effect of nano-Tio2 and graphite on the tribological performance of epoxy matrix composites. J Appl Polym Sci 102(3):2391–2400

    Article  CAS  Google Scholar 

  • Yang Y, Grulke EA, Zhang ZG, Wu G (2005) Rheological behavior of carbon nanotube and graphite nanoparticle dispersions. J Nanosci Nanotechnol 5(4):571–579

    Article  CAS  Google Scholar 

  • Yang J, Tian M, Jia QX, Zhang LQ, Li XL (2006) Influence of graphite particle size and shape on the properties of NBR. J Appl Polym Sci 102(4):4007–4015

    Article  CAS  Google Scholar 

  • Yang F, Bick A, Shandalov S, Brenner A, Oron G (2009) Yield stress and rheological characteristics of activated sludge in an airlift membrane bioreactor. J Membr Sci 334(1–2):83–90

    Article  CAS  Google Scholar 

  • Yoshida A, Kitayama Y, Kiguchi K, Yamada T, Akasaka H, Sasaki R, Takeuchi T (2019) Gold nanoparticle-incorporated molecularly imprinted microgels as radiation sensitizers in pancreatic cancer. ACS Appl Bio Mater 2(3):1177–1183

    Article  CAS  Google Scholar 

  • Zhang J, Xu S, Kumacheva E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126(25):7908–7914

    Article  CAS  Google Scholar 

  • Zheng W, Lu X, Wong SC (2004) Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci 91(5):2781–2788

    Article  CAS  Google Scholar 

  • Zhou XD, Gu HC (2002) Synthesis of PMMA-ceramics nanocomposites by spray process. J Mater Sci Lett 21(7):577–580

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dave, P.N., Khosla, E. (2022). Rheological Characterization Tools: A Review. In: Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-34007-0_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34007-0_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34007-0

  • Online ISBN: 978-3-030-34007-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics