Skip to main content

Spectroscopic Techniques for Multiferroic Materials

  • Living reference work entry
  • First Online:
Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites

Abstract

Today’s technological world is looking for multifunctional materials in which one parameter can be tuned by another or vice versa. Multiferroic materials, which have two or more ferroic order parameters present at the same time, are a viable candidate for this class of materials. Magnetoelectric multiferroic materials have an efficient connection between the magnetic and electric order characteristics, making them very attractive for nondestructive, low-power, high-density magnetically read, and electrically written memory components, magnetic sensors, and so on. However, in order to gain a better understanding of the origins of coexistence of two or more order parameters and magnetoelectric coupling in magnetoelectric multiferroic materials, it is necessary to probe the electronic properties and electronic band structures at the atomic level, as well as understand the bulk and surface band structures, occupied/unoccupied states, chemical state, and local environment of each individual species, or at the interface of magnetoelectric/multiferroic materials-based heterostructures. In light of this, the chapter briefly describes the various spectroscopic techniques including ultraviolet-visible spectroscopy, photoemission spectroscopy including X-ray photoemission spectroscopy, ultraviolet photoelectron spectroscopy and angle-resolved photoelectron spectroscopy, and X-ray absorption spectroscopy used to investigate the various aspects of multiferroic/magnetoelectric multiferroic materials and heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ablat A, Muhemmed E, Cheng S, Wang J, Qian H, Wu R, Zhang N, Wu R, Ibrahim K (2012) Electronic structure of BiFe1-xMnxO3 thin films investigated by x-ray absorption spectroscopy. J Nanomater 2012:1–7

    Google Scholar 

  • Aghavnian T, Moussy J-B, Stanescu D, Belkhou R, Jedrecy N, Magnan H, Ohresser P, Arrio M-A, Sainctavit P, Barbier A (2015) Determination of the cation site distribution of the spinel in multiferroic CoFe2O4/BaTiO3 layers by X-ray photoelectron spectroscopy. J Electron Spectrosc Relat Phenom 202:16–21

    Article  CAS  Google Scholar 

  • Arafat S (2020) Structural transition and magnetic properties of high Cr-doped BiFeO3 ceramic. Cerâmica 66(378):114–118

    Article  CAS  Google Scholar 

  • Arca E, McInerney MA, Shvets IV (2016) Band alignment at the interface between ni-doped Cr2O3 and Al-doped ZnO: implications for transparent p–n junctions. J Phys Condens Matter 28(22):224004

    Article  CAS  Google Scholar 

  • Bai W, Chen C, Yang J, Zhang Y, Qi R, Huang R, Tang X, Duan C-G, Chu J (2015) Dielectric behaviors of aurivillius Bi5Ti3Fe0.5Cr0.5O15 multiferroic polycrystals: determining the intrinsic magnetoelectric responses by impedance spectroscopy. Sci Rep 5:17846

    Article  CAS  Google Scholar 

  • Baraskar P, Agrawal A, Choudhary RJ, Sen P (2020) Band offset studies in Cr2O3/Ti0.02Cr1.98O3 bilayer film using photoelectron spectroscopy. Phys B Condens Matter 599:412590

    Article  CAS  Google Scholar 

  • Briggs, D. (1981). Handbook of X-ray photoelectron spectroscopy, CD Wanger, WM Riggs, LE Davis, JF Moulder and GE Muilenberg Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979. 190 pp. 195, Surface and Interface analysis 3(4), v–v

    Google Scholar 

  • Cancellieri C, Reinle-Schmitt ML, Kobayashi M, Strocov VN, Willmott P, Fontaine D, Ghosez P, Filippetti A, Delugas P, Fiorentini V (2014) Doping-dependent band structure of LaAlO3/SrTiO3 interfaces by soft x-ray polarization-controlled resonant angle-resolved photoemission. Phys Rev B 89(12):121412

    Article  CAS  Google Scholar 

  • Casamento J, Holtz ME, Paik H, Dang P, Steinhardt R, Xing H, Schlom DG, Jena D (2020) Multiferroic LuFeO3 on GaN by molecular-beam epitaxy. Appl Phys Lett 116(10):102901

    Article  CAS  Google Scholar 

  • Chambers S, Liang Y, Gao Y (2000) Non-cummutative band offset at U Cr2O3/ U- Fe2O3 (0001) heterojunctions. Phys Rev B 61(19):13223

    Article  CAS  Google Scholar 

  • Chen X, Yang S, Kim J-H, Kim H-D, Kim J-S, Rojas G, Skomski R, Lu H, Bhattacharya A, Santos T et al (2011) Ultrathin BaTiO3 templates for multiferroic nanostructures. New J Phys 13(8):083037

    Article  CAS  Google Scholar 

  • Chen Z, Chen Z, Kuo C-Y, Tang Y, Dedon LR, Li Q, Zhang L, Klewe C, Huang Y-L, Prasad B et al (2018) Complex strain evolution of polar and magnetic order in multiferroic BiFeO3 thin films. Nat Commun 9(1):1–9

    CAS  Google Scholar 

  • Choi JH, Pham C, Dorman J, Kim T, Chang JP (2020) Atomic layer deposition of YMnO3 thin films. J Magn Magn Mater 498:166146

    Article  CAS  Google Scholar 

  • Deng X, Zeng Z, Gao R, Wang Z, Chen G, Cai W, Fu C (2020) Study of structural, optical and enhanced multiferroic properties of Ni doped BFO thin films synthesized by sol-gel method. J Alloys Compd 381:154857

    Google Scholar 

  • Duan C-G, Jaswal SS, Tsymbal EY (2006) Predicted magnetoelectric effect in Fe/ BaTiO3 multilayers: ferroelectric control of magnetism. Phys Rev Lett 97(4):047201

    Article  CAS  Google Scholar 

  • Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D Appl Phys 38(8):R123

    Article  CAS  Google Scholar 

  • Gholam T, Zheng LR, Wang JO, Qian HJ, Wu R, Wang H-Q (2019) Synchrotron X-ray absorption spectroscopy study of local structure in Al-doped BiFeO3 powders. Nanoscale Res Lett 14(1):1–12

    Article  CAS  Google Scholar 

  • Ghosh S, Baral M, Kamparath R, Choudhary R, Phase D, Singh S, Ganguli T (2019) Epitaxial growth and interface band alignment studies of all oxide U Cr2O3/ V-Ga2O3 pn heterojunction. Appl Phys Lett 115(6):061602

    Article  CAS  Google Scholar 

  • Goswami S, Dey K, Chakraborty S, Giri S, Chowdhury U, Bhattacharya D (2020) Large magnetoelectric coupling in the thin film of multiferroic CuO. ACS Omega 5(36):22883–22890

    Article  CAS  Google Scholar 

  • Gu J-J, Zhao G-L, Cheng F-W, Han J-R, Liu L-H, Sun H-Y (2011) Magnetoelectric properties of mn-substituted BiFeO3 thin films with a TiO2 barrier. Phys B Condens Matter 406(23):4400–4403

    Article  CAS  Google Scholar 

  • Gupta PK, Ghosh S, Pal A, Roy S, Joshi AG, Ghosh A, Chatterjee S (2019) Study of band structure, transport and magnetic properties of BiFeO3–TbMnO3 composite. SN Appl Sci 1(12):1607

    Article  CAS  Google Scholar 

  • Huang F, Lu X, Lin W, Kan Y, Zhang J, Chen Q, Wang Z, Li L, Zhu J (2010) Thickness-dependent structural and magnetic properties of BiFeO3 films prepared by metal organic decomposition method. Appl Phys Lett 97(22):222901

    Article  CAS  Google Scholar 

  • Hubmann AH, Li S, Zhukov S, von Seggern H, Klein A (2016) Polarisation dependence of schottky barrier heights at ferroelectric BaTiO3/RuO2 interfaces: influence of substrate orientation and quality. J Phys D Appl Phys 49(29):295304

    Article  CAS  Google Scholar 

  • Kim TC, Ojha S, Tian G, Lee SH, Jung HK, Choi JW, Kornblum L, Walker FJ, Ahn CH, Ross CA et al (2018) Self-assembled multiferroic epitaxial BiFeO3/CoFe2O4 nanocomposite thin films grown by RF magnetron sputtering. J Mater Chem C 6(20):5552–5561

    Article  CAS  Google Scholar 

  • Kraut E, Grant R, Waldrop J, Kowalczyk S (1980) Precise determination of the valence-band edge in x-ray photoemission spectra: application to measurement of semiconductor interface potentials. Phys Rev Lett 44(24):1620

    Article  CAS  Google Scholar 

  • Krempask’y J, Muff S, Bisti F, Fanciulli M, Volfová H, Weber AP, Pilet N, Warnicke P, Ebert H, Braun J et al (2016) Entanglement and manipulation of the magnetic and spin–orbit order in multiferroic Rashba semiconductors. Nat Commun 7(1):1–7

    Google Scholar 

  • Kumar A, Katiyar RS, Guo R, Bhalla A (2014) Magnetoelectric characterization of multiferroic nanostructure materials. Ferroelectrics 473(1):137–153

    Article  CAS  Google Scholar 

  • Li J, Chen W, Qian G, Cheng J (2020) Structure and properties of preferential (110) orientation BiFeO3 thin films by sol-gel method. Integr Ferroelectr 210(1):161–166

    Article  CAS  Google Scholar 

  • Liang J, Wang F, Chen Q, Wang G, Zhou X, Jiang W, Kou Z, Huang Z, Xu Q, Du J et al (2021) Investigation on interfacial effect of CoFeB/GaAs heterostructure. J Alloys Compd 855:157192

    Article  CAS  Google Scholar 

  • Liu S, Akbashev A, Yang X, Liu X, Li W, Zhao L, Li X, Couzis A, Han M, Zhu Y (2014) Hollandites as a new class of multiferroics. Sci Rep 4:1–6

    Google Scholar 

  • Lv B, Qian T, Ding H (2019) Angle-resolved photoemission spectroscopy and its application to topological materials. Nature Rev Phys 1(10):609–626

    Article  Google Scholar 

  • Mishra K, Instan AA, Kumari S, Scott J, Katiyar RS (2020) Lead palladium titanate: A room temperature nanoscale multiferroic thin film. Sci Rep 10(1):1–11

    Article  CAS  Google Scholar 

  • Mukherjee A, Hossain SM, Pal M, Basu S (2012) Effect of Y-doping on optical properties of multiferroics BiFeO3 nanoparticles. Appl Nanosci 2(3):305–310

    Article  CAS  Google Scholar 

  • Pesquera D, Khestanova E, Ghidini M, Zhang S, Rooney AP, Maccherozzi F, Riego P, Farokhipoor S, Kim J, Moya X et al (2020) Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off. Nat Commun 11(3190):1–8

    Google Scholar 

  • Radaelli G, Cantoni M, Lijun L, Espahbodi M, Bertacco R (2014) Two dimensional growth of ultrathin fe films on BaTiO3 with sharp chemical interface. J Appl Phys 115(6):063501

    Article  CAS  Google Scholar 

  • Rana DS, Takahashi K, Mavani K, Kawayama I, Murakami H, Tonouchi M, Yanagida T, Tanaka H, Kawai T (2007) Thickness dependence of the structure and magnetization of BiFeO3 thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) substrate. Phys Rev B 75(6):060405

    Article  CAS  Google Scholar 

  • Seah M (2012) Simple universal curve for the energy-dependent electron attenuation length for all materials. Surf Interface Anal 44(10):1353–1359

    Article  CAS  Google Scholar 

  • Sharma S, Singh V, Kotnala R, Dwivedi RK (2014) Comparative studies of pure BiFeO3 prepared by sol–gel versus conventional solid-state-reaction method. J Mater Sci Mater Electron 25(4):1915–1921

    Article  CAS  Google Scholar 

  • Singh MK, Yang Y, Takoudis CG (2009) Synthesis of multifunctional multiferroic materials from metalorganics. Coord Chem Rev 253(23–24):2920–2934

    Article  CAS  Google Scholar 

  • Sobola D, Ramazanov S, Konecn’y M, Orudzhev F, Kaspar P, Papež N, Knápek A, Potocek M (2020) Complementary SEM-AFM of swelling Bi-Fe-O film on HOPG substrate. Materials 13(10):2402

    Article  CAS  Google Scholar 

  • Stengel M, Aguado-Puente P, Spaldin NA, Junquera J (2011) Band alignment at metal/ferroelectric interfaces: insights and artifacts from first principles. Phys Rev B 83(23):235112

    Article  CAS  Google Scholar 

  • Takahashi K, Tonouchi M (2006) Influence of mn doping on ferroelectric-antiferromagnet BiFeO3 thin films grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates. Jpn J Appl Phys 45(8L):L755

    Article  CAS  Google Scholar 

  • Tamilselvan A, Balakumar S, Sakar M, Nayek C, Murugavel P, Kumar KS (2014) Role of oxygen vacancy and Fe–O–Fe bond angle in compositional, magnetic, and dielectric relaxation on eu-substituted BiFeO3 nanoparticles. Dalton Trans 43(15):5731–5738

    Article  CAS  Google Scholar 

  • Tang Y, Wang R, Zhang Y, Xiao B, Li S, Du P (2019) Magnetoelectric coupling tailored by the orientation of the nanocrystals in only one component in percolative multiferroic composites. RSC Adv 9(35):20345–20355

    Article  CAS  Google Scholar 

  • Taz, H., Prasad, B., Huang,Y.-L., Chen, Z., Hsu, S.-L.,Xu, R., Thakare,V., Sakthivel, T. S., Liu, C., Hettick, M. et al. (2020), ‘Integration of amorphous ferromagnetic oxides with multiferroic materials for room temperature magnetoelectric spintronics’, Sci Rep 10(1), 1–10

    Google Scholar 

  • Wang PW, Guttag M, Tu C-S (2014) Surface modification of multiferroic BiFeO3 ceramic by argon sputtering. J Surf Eng Mater Adv Technol 2014:295–308

    Google Scholar 

  • Wei Y, Gao C, Chen Z, Xi S, Shao W, Zhang P, Chen G, Li J (2016) Four-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure. Sci Rep 6:30002

    Article  CAS  Google Scholar 

  • Wu Y, Yao T, Lu Y, Zou B, Mao X, Huang F, Sun H, Chen X (2017) Magnetic, dielectric, and magnetodielectric properties of bi-layered perovskite Bi4.25Gd0.75Fe0.5Co0.5Ti3O15. J Mater Sci 52(12):7360–7368

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Agrawal, A., Dar, T.A. (2022). Spectroscopic Techniques for Multiferroic Materials. In: Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-34007-0_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34007-0_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34007-0

  • Online ISBN: 978-3-030-34007-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics