Skip to main content

Economic Utilization of Salt-Affected Wasteland for Plant Production

A Case Study from Pakistan

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

The present world population is over 7.7 billion and is growing by the minute. The need to fulfill demands for food, animal fodder, and industrial raw materials is one of the biggest challenges of this century, as is the increase in global pollution. As limited land and water resources are available, strategies are required to use these resources very carefully. More than 1 billion hectares of land worldwide are salt affected and barren. These lands are poor in fertility and unfit for conventional agricultural crop production. Irrigation without proper drainage arrangements causes waterlogging and secondary salinization. The scientific literature indicates that the groundwater of saline lands is brackish and injurious for plant production. To utilize salt-affected wasteland under a sustainable productive system by using brackish groundwater, the Nuclear Institute for Agriculture and Biology (NIAB) in Faisalabad, Pakistan, has developed “biosaline agriculture technology” for economic utilization of salt-affected wasteland and brackish groundwater for self-sustaining plant production. This chapter describes how salt-affected wasteland can be reclaimed by use of salt-tolerant plants (halophytes) of high economic value. This technology has been demonstrated at the NIAB’s Biosaline Research Station located near the village of Pakka Anna in a rural area 50 km away from Faisalabad. At the station, saline agroforestry, cultivation of forage grasses as fodder for grazing animals, fruit trees, medicinal plants and other nonconventional crops, fish aquaculture technology, honeybee culture, charcoal production from waste wood, extraction of essential oil from Eucalyptus, etc. are demonstrated. All of these technologies are discussed briefly in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abeysinghe, P. D. (2010). Antibacterial activity of some medicinal mangroves against antibiotic resistant pathogenic bacteria. Indian Journal of Pharmaceutical Sciences, 72(2), 167–172. https://doi.org/10.4103/0250-474X.65019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abideen, Z., Ansari, R., & Khan, M. A. (2011). Halophytes: potential source of ligno-cellulosic biomass for ethanol production. Biomass and Bioenergy, 35(5), 1818–1822.

    Article  CAS  Google Scholar 

  • Akhter, J., Mahmood, K., Malik, K. A., Ahmed, S., & Murray, R. (2003). Amelioration of a saline sodic soil through cultivation of a salt–tolerant grass (Leptochloa fusca). Environmental Conservation, 30, 168–174.

    Article  CAS  Google Scholar 

  • Akhter, J., Monneveux, P., Sabir, S. A., Ashraf, M. Y., Lateef, Z., & Serraj, R. (2010). Selection of drought tolerant and high water use efficient rice cultivars through 13C isotope discrimination technique. Pakistan Journal of Botany, 42(6), 3887–3897. www.pakbs.org/pjbot/

  • Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision (ESA working paper no. 12-03). Rome: United Nations Food and Agriculture Organization.

    Google Scholar 

  • Alsharhan, A. S., Wood, W. W., Gouie, A. S., Fowler, A., & Abdellatif, E. M. (2003). Desertification in the third millennium (p. 489). Lisse: Swets and Zeitlinger.

    Book  Google Scholar 

  • Al-Shorepy, S. A., & Alhadrami, G. A. (2008). The effect of dietary inclusion of halophyte Distichlis grass hay Distichlis spicata (L.) on growth performance and body composition of Emirati goats. Emirates Journal of Food and Agriculture, 20(2), 18–27. http://www.cfa.uaeu.ac.ae/research/ejfa.htm.

    Article  Google Scholar 

  • Alzohairy, M. A. (2016). Therapeutics role of Azadirachta indica (neem) and their active constituents in diseases prevention and treatment. Evidence-Based Complementary and Alternative Medicine, 2016, 7382506. https://doi.org/10.1155/2016/7382506.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf, M. Y. (2007). Variation in nutritional composition and growth performance of some halophytic species grown under saline conditions. African Journal of Range & Forage Science, 24(1), 19–23. https://doi.org/10.2989/102201107780178203.

    Article  Google Scholar 

  • Ashraf, M. Y., & Sarwar, G. (2002). Salt tolerance potential in some members of Brassicaceae: Physiological studies on water relations and mineral contents. In R. Ahmad & K. A. Malik (Eds.), Prospects for saline agriculture (pp. 237–245). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Ashraf, M. Y., Wahed, R. A., Bhatti, A. S., Sarwar, G., & Aslam, Z. (1999). Salt tolerance potential in different Brassica species, growth studies. In H. Hamdy, H. Lieth, M. Todorovic, & M. Moschenko (Eds.), Halophytes uses in different climates – II (pp. 119–125). Leiden: Backhuys.

    Google Scholar 

  • Ashraf, M.Y., Ashraf, M., & Sarwar, G. (2005). Physiological approaches to improving plant salt tolerance. In R. Dris (ed) Crops: Growth, Quality and Biotechnology. ISBN:952-91-8601-0, WFL Publisher (Helsinki, Finland) pp. 1206–1227.

    Google Scholar 

  • Ashraf, M. Y., Sarwar, G., Ashraf, M., Hussain, F., Wahed, R. A., & Iqbal, M. M. (2006a). Growth performance and nutritional values of salt tolerant plants growing under saline environment. In M. Öztürk, Y. Waisel, M. A. Khan, & G. Görk (Eds.), Biosaline agriculture and salinity tolerance in plants (pp. 35–44). Basel/Boston/Berlin: Birkhäusar. ISBN 10:3-7643-7609-0; ISBN 13:978-3-764-7609-3.

    Chapter  Google Scholar 

  • Ashraf, M. Y., Shirazi, M. U., Ashraf, M., Sarwar, G., & Khan, M. A. (2006b). Utilization of salt-affected soils by growing some Acacia species. In M. A. Khan & D. J. Weber (Eds.), Ecophysiology of high salinity tolerance (pp. 289–311.355). Dordrecht: Springer. ISBN-10 1-4020-4017-2 (HB), ISBN-13 978-1-4020-4017-7 (HB), ISBN-10 1-4020-4018-0 (e-book), ISBN-13 978-1-4020-8018-4 (e-book).

    Chapter  Google Scholar 

  • Ashraf, M. Y., Ashraf, M., Mehmood, K., Akhtar, J., Hussain, F., & Arshad, M. (2010). Phytoremediation of saline soils for sustainable agricultural productivity. In M. Ashraf, M. Ozturk, & M. S. A. Ahmad (Eds.), Plant adaptation and phytoremediation (pp. 335–355). Dordrecht: Springer. https://doi.org/10.1007/978-90-481-9370-7_15.

    Chapter  Google Scholar 

  • Ashraf, M. Y., Awan, A. R., & Mahmood, K. (2012a). Rehabilitation of saline ecosystems through cultivation of salt tolerant plants. Pakistan Journal of Botany, 44, 69–75.

    CAS  Google Scholar 

  • Ashraf, M. Y., Azhar, N., Mahmood, K., Ahmad, R., & Waraich, E. A. (2012b). Oilseed Brassica napus and phytoremediation of lead. In N. A. Anjum, M. E. Pereira, I. Ahmad, A. C. Duarte, S. Umer, & N. A. Khan (Eds.), Phytotechnologies remediation of environmental contaminants (pp. 151–178). Boca Raton/London/New York: CRC Press, Taylor & Francis Group. ISBN 978-1-4398-7518-6 (Hardback).

    Chapter  Google Scholar 

  • Ashraf, M. Y., Asraf, M., & Ozturk, M. (2018). Underutilized vegetables: a tool to address nutritional issues, poverty reduction and food security. In M. Ozturk, K. R. Hakeem, M. Ashraf, & A. MSA (Eds.), Global prospectives on underutilized crops (pp. 1–23). Cham: Springer. https://doi.org/10.1007/978-3-319-77776-4_1.

    Chapter  Google Scholar 

  • Aslam, Z., Awan, A. R., Rizwan, M., & Gulnaz A., Chaghtai M. I. (2009). Saline Agriculture Farmer Participatory Development Project in Pakistan: Punjab Component (Technical Report, 2002–2008). Published by Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan. 46 p.

    Google Scholar 

  • Attia-Ismail, S. (2018). Halophytes as forages. In R. L. Edvan & L. R. Bezerra (Eds.), New perspectives in forage crops. London: IntechOpen. https://doi.org/10.5772/intechopen.69616. http://creativecommons.org/licenses/3.0.

    Chapter  Google Scholar 

  • Barrett-Lennard, E. G. (2002). Restoration of saline land through revegetation. Agric Water Manage. 53, 213–226.

    Google Scholar 

  • Cuevas, J., Daliakopoulos, I. N., del Moral, F., Hueso, J. J., & Tsanis, I. K. (2019). A review of soil-improving cropping systems for soil salinization. Agronomy, 9(295), 1–22. https://doi.org/10.3390/agronomy9060295.

    Article  CAS  Google Scholar 

  • Dagar, J. C. (2003). Biodiversity of Indian saline habitats and management and utilization of high salinity tolerant plants with industrial application for rehabilitation of saline areas. In A. A. Alsharhan, W. W. Wood, A. S. Gouie, A. Fowler, & E. M. Abdellatif (Eds.), Desertification in the third millennium. (pp. 151–172). Lisse: Swets and Zeitlinger.

    Chapter  Google Scholar 

  • Dagar, J. C. (2009). Opportunities for alternate land use in salty and water scarcity area. International Journal of Ecology and Environmental Sciences, 35(1), 53–66.

    Google Scholar 

  • Dagar, J. C., & Minhas, P. S. (2016). Agroforestry for management of waterlogged saline soils and poor-quality waters. Advances in agroforestry (Vol. 13). New Delhi: Springer.

    Book  Google Scholar 

  • Dagar, J. C., & Yadav, R. K. (2017). Climate resilient approaches for enhancing productivity of saline agriculture. Journal of Soil Salinity and Water Quality, 9(1), 9–29.

    Google Scholar 

  • Dagar, J. C., Tomar, O. S., Minhas, P. S., & Kumar, M. (2013). Lemon grass productivity as affected by salinity of irrigation water, planting methods and fertilizer doses on a calcareous soil in a semiarid region of northwest India. Indian Journal of Agricultural Sciences, 83(7), 734–738.

    Google Scholar 

  • Dagar, J. C., Pandey, C. B., & Chaturvedi, C. S. (2014). Agroforestry: a way forward for sustaining fragile coastal and island agro-ecosystems. In J. C. Dagar, A. K. Singh, & A. Arunachalam (Eds.), Agroforestry systems in India: livelihood security & environmental services. Advances in agroforestry (Vol. 10, pp. 185–232). New Delhi: Springer.

    Chapter  Google Scholar 

  • Dagar, J. C., Tomar, O. S., Minhas, P. S., Yadav, R. K., Yadav, G., et al. (2018). Biomass production of different tree species irrigated with saline groundwater on degraded calcareous soil in dry regions. Scholarly Journal of Food and Nutrition, 1(3). https://doi.org/10.32474/SJFN.2018.01.000115.

  • Faustino, M. V., Faustino, M., & Pinto, D. (2019). Halophytic grasses, a new source of nutraceuticals? A review on their secondary metabolites and biological activities. International Journal of Molecular Sciences, 20(5), 1067. https://doi.org/10.3390/ijms20051067.

    Article  CAS  PubMed Central  Google Scholar 

  • Guerroro, J., & Isasa, M. (1997). Nutritional composition of leaves of Chenopodium species (C. album L., C. murale L. and C. opulifolium Shraeder). International Journal of Food Science and Nutrition, 48, 321–327.

    Article  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., Prasad, M. N. V., Ozturk, M., & Fujita, M. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International, 2014, 589341. https://doi.org/10.1155/2014/589341. 12 p.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., & Zhang, J. (2019). Salinity stress in arid and semi-arid climates: effects and management in field crops. In S. Hussain (Ed.), Climate change and agriculture. London: IntechOpen. https://doi.org/10.5772/intechopen.87982.

    Chapter  Google Scholar 

  • Jaradat, A. A. (2003). Halophytes for sustainable farming systems in the Middle East. In A. S. Alsharhan, W. W. Wood, A. S. Goudie, A. Fowler, & E. M. Abdellatif (Eds.), Desertification in the third millennium (pp. 187–204). Lisse: Swets & Zeitlinger.

    Chapter  Google Scholar 

  • Khan, M. A. (2007). Biosaline agriculture in Pakistan. In M. Kafi, & M. A. Khan (Eds.), Crop and Forage Production using Saline Waters, 5–10, 185–190.

    Google Scholar 

  • Khanum, S. A., Yaqoob, T., Sadaf, S., Hussain, M., Jabbar, M. B., Hussain, H. N., Kausar, R., & Rehman, S. (2007). Nutritional evaluation of various feedstuffs for livestock production using in vitro gas method. Pakistan Veterinary Journal, 27(3), 129–133.

    CAS  Google Scholar 

  • Ladeiro, B. (2012). Saline agriculture in the 21st century: using salt contaminated resources to cape food requirements: a review. Journal of Botany, 2012, 7.

    Article  CAS  Google Scholar 

  • Li, F. S., Yu, J. M., Nong, M. L., Kang, S. Z., & Zhang, J. H. (2010). Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers. Agricultural Water Management, 97(2), 231–239.

    Article  Google Scholar 

  • Panta, S., Flowers, T., Lane, P., Doyle, R., & Haros, G. (2014). Halophytes agriculture: success stories. Environmental and Experimental Botany, 107, 71–83.

    Article  Google Scholar 

  • Qadir, M., & Oster, J. (2002). Vegetative bioremediation of calcareous sodic soils: history, mechanisms, and evaluation. Irrig Sci 21, 91–101. https://doi.org/10.1007/s00271-001-0055-6

  • Qadir, M., Tubeileh, A., Akhtar, J., Larbi, A., Minhas, P. S., & Khan, M. A. (2008). Productivity enhancement of salt-affected environments through crop diversification. Land Degradation & Development, 19, 429–453.

    Article  Google Scholar 

  • Riasi, A., Mesgaran, M. D., Stern, M. D., & Ruiz Moreno, M. J. (2012). Effects of two halophytic plants (Kochia and Atriplex) on digestibility, fermentation and protein synthesis by ruminal microbes maintained in continuous culture. Asian-Australasian Journal of Animal Sciences, 25(5), 642–647. https://doi.org/10.5713/ajas.2011.11256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, Y., & Bhatnagar, P. (2019). An overview on inherent potential of underutilized fruits. International Journal of Pure and Applied Sciences, 7(3), 86–103. https://doi.org/10.18782/2320-7051.7486.

    Article  Google Scholar 

  • United Nations Department of Economic and Social Affairs. (2019). World population prospects 2019. New York: United Nations.

    Google Scholar 

  • Velmurugan, A., Dam Roy, S., Dagar, J. C., Swarnam, T. P., & Jaisankar, I. (2016). Innovative technologies to sustain saline island agriculture in the scenario of climate change: a case study from Andaman Islands, India. In J. C. Dagar, P. C. Sharma, D. K. Sharma, & A. K. Singh (Eds.), Innovative saline agriculture (pp. 387–417). New Delhi: Springer.

    Chapter  Google Scholar 

  • Ventura, Y., Eshel, A., Pasternak, D., & Sagi, M. (2015). The development of halophyte-based agriculture: Past and present. Annals of Botany, 115(3), 529–540. https://doi.org/10.1093/aob/mcu173.

    Article  CAS  PubMed  Google Scholar 

  • Xianzhao, L., Chunzhi, W., & Qing, S. (2013). Screening for salt tolerance in eight halophyte species from Yellow River delta at the two initial growth stages. ISRN Agronomy, 2013, 592820. https://doi.org/10.1155/2013/592820. 8 p.

    Article  CAS  Google Scholar 

  • Zhang, J. Y., Wang, Z. Y., Jenks, M. A., Hasegawa, P. M., & Jain, S. M. (2007). Recent advances in molecular breeding of forage crops for improved drought and salt stress tolerance. In Advances in molecular breeding towards salinity and drought tolerance (pp. 797–817). Dordrecht: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yasin Ashraf, M., Awan, A.R., Anwar, S., Khaliq, B., Malik, A., Ozturk, M. (2020). Economic Utilization of Salt-Affected Wasteland for Plant Production. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_87-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_87-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics