Skip to main content

Halophytes: The Nonconventional Crops as Source of Biofuel Production

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Biofuels are gaining importance due to high crude oil prices, high energy demands, and global warming issues. According to the world energy council, the biofuel production will be tripled by 2030, with Brazil and the United States contributing to 80% of the total biofuel production. The use of first generation biofuels is connected with food insecurity and increase in food prices, while second generation biofuels used raw cellulosic mass from nonfood crops. The plant-based fuels are considered in renewable sources with easy growing practices and have lesser carbon emission as compared to fossil fuels. This inaugurates the possibility of using the neglected and nonconventional plant resources such as halophytes over conventional agriculture crops for biofuel production. Halophytes have great potential in the production of biofuels due to seed oil and energy-rich lignocellulosic biomass. Enzymatic hydrolysis and microbial fermentation are some of the processing techniques which can be used for the production of biodiesel and bioethanol. Along with biodiesel and bioethanol, biochar, a carbonaceous material produced after pyrolysis of Salicornia, Atriplex, Achnatherum, Kosteletzkya, and Sesbania, has been reported for reclamation of degraded soil and increase in soil fertility. The use of biochar is a safe and economically viable system. A milestone use of these nonconventional crops has been done by Etihad Airways who operated first flight using aviation biofuels made by seed oil of Salicornia in February 2018. This review summarized the prospects of halophytic biomass in biofuel production and various application statuses all over the world such as the production of biodiesel, bioethanol, bio-oil, syngas, and some other alternatives. The progressive direction of biofuel production from halophytes should form a trinity with agriculture, biotechnology, and chemistry so as to generate green biomass energy with cost-efficient as well as environmentally friendly aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASEAN:

Association of Southeast Asian Nations

EC:

European Commission

EROI:

Energy return on investment

GHG:

Greenhouse gases

LCA:

Life cycle analysis

Mtoe:

Millions of tons of oil equivalent

References

  • Abdullah, B., Muhammad, S. A. F. A. S., Shokravi, Z., Ismail, S., Kassim, K. A., Mahmood, A. N., & Aziz, M. M. A. (2019). Fourth generation biofuel: A review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, 107, 37–50.

    Google Scholar 

  • Abideen, Z., Ansari, R., & Khan, M. A. (2011). Halophytes: Potential source of ligno-cellulosic biomass for ethanol production. Biomass and Bioenergy, 35, 1818–1822.

    CAS  Google Scholar 

  • Abideen, Z., Qasim, M., Rizvi, R. F., Gul, B., Ansari, R., & Khan, M. A. (2015). Oilseed halophytes: A potential source of biodiesel using saline degraded lands. Biofuels, 6, 241–248.

    CAS  Google Scholar 

  • Akoh, C. C., Chang, S. W., Lee, G. C., & Shaw, J. F. (2007). Enzymatic approach to biodiesel production. Journal of Agricultural and Food Chemistry, 55, 8995–9005.

    PubMed  CAS  Google Scholar 

  • Al Marzooqi, F., & Yousef, L. F. (2017). Biological response of a sandy soil treated with biochar derived from a halophyte (Salicornia bigelovii). Applied Soil Ecology, 114, 9–15.

    Google Scholar 

  • Alalwan, H. A., Alminshid, A. H., & Aljaafari, H. A. (2019). Promising evolution of biofuel generations. Subject review. Renewable Energy Focus, 28, 127–139.

    Google Scholar 

  • Alassali, A., Oyetunde, T., Rashid, K., Rodríguez, J., Schmidt, J., & Thomsen, M. H. (2013). Biofuels from coastal deserts: The sustainability case for a Salicornia bigelovii-based biorefinery. https://www.bio.org/sites/default/files/legacy/bioorg/docs/MON_DELMAR_Biofuels%20from%20coastal%20deserts%20the%20sustainability%20case%20for%20a%20Salicornia%20bigelovii-based%20biorefinery.pdf

  • Ali, M., Naqvi, B., & Watson, I. A. (2018). Possibility of converting indigenous Salvadora persica L. seed oil into biodiesel in Pakistan. International Journal of Green Energy, 15, 427–435.

    CAS  Google Scholar 

  • Anonymous. (2016). Global status report. Paris: REN21. https://www.ren21.net/wpcontent/uploads/2019/05/REN21_GSR2016_FullReport_en_11.pdf

  • Anonymous. (2018). Renewable energy and jobs – Annual review 2018. International Renewable Energy Agency. https://www.irena.org/publications/2018/May/Renewable-Energy-and-Jobs-Annual-Review-2018

  • Anonymous. (2019a). Annual energy outlook 2019. Energy Information Administration. https://www.eia.gov/outlooks/archive/aeo19/pdf/aeo2019.pdf

  • Anonymous. (2019b). India biofuels annuals 2019. https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Biofuels%20Annual_New%20Delhi_India_8-9-2019.pdf

  • Araújo, K., Mahajan, D., Kerr, R., & da Silva, M. (2017). Global biofuels at the crossroads: An overview of technical, policy, and investment complexities in the sustainability of biofuel development. Agriculture, 7, 32. https://doi.org/10.3390/agriculture7040032.

    Article  CAS  Google Scholar 

  • Arora, J., & Ramawat, K. G. (2013). Bioenergy resources of the Thar Desert. Biofuels, 4, 617–633.

    CAS  Google Scholar 

  • Ashraf, M. T., Fang, C., Bochenski, T., Cybulska, I., Alassali, A., Sowunmi, A., et al. (2016). Estimation of bioenergy potential for local biomass in the United Arab Emirates. Emirates Journal of Food and Agriculture, 28, 99–106.

    Google Scholar 

  • Atia, A., Debez, A., Barhoumi, Z., Abdelly, C., & Smaoui, A. (2010). Localization and composition of seed oils of Crithmum maritimum L.(Apiaceae). African Journal of Biotechnology, 9, 6482–6485.

    CAS  Google Scholar 

  • Aysu, T. (2014). The effect of boron minerals on pyrolysis of common reed (Phragmites australis) for producing bio-oils. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36, 2511–2518.

    CAS  Google Scholar 

  • Bacovsky, D., Ludwiczek, N., Ognissanto, M., & Wörgetter, M. (2013). Status of advanced biofuels demonstration facilities in 2012. In: IEA bioenergy task (pp. 1–209). https://www.osti.gov/etdeweb/servlets/purl/22110325.

  • Bacovsky, D., Matschegg, D., & Holzleitner, S. (2017). ETIP Bioenergy-SABS 2017. Deliverable D2.2/Date 31.08.2017/Version 1 European technology and innovation platform bioenergy – Support of advanced bioenergy stakeholders 2016–17.

    Google Scholar 

  • Balan, V. (2014). Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN biotechnology, 2014, Article ID 463074.

    Google Scholar 

  • Bañuelos, J. A., Velázquez-Hernández, I., Guerra-Balcázar, M., & Arjona, N. (2018). Production, characterization and evaluation of the energetic capability of bioethanol from Salicornia bigelovii as a renewable energy source. Renewable Energy, 123, 125–134.

    Google Scholar 

  • Belasari, D., Alboainain, S., Bastidas-Oyanedel, J.-R., Schmidi, J. E. (2015). Assesment of Biofuel potential from Agave spp. and Salicornia in the arid Emirate of Abu Dhabi. In N. E. Mastorakis (Ed.), Advances in environmental and agricultural science (pp. 144–148). WSEAS.

    Google Scholar 

  • Biernat, K., Malinowski, A., & Gnat, M. (2013). The possibility of future biofuels production using waste carbon dioxide and solar energy. In F. Zhen (Ed.), Biofuels: Economy, environment and sustainability (pp. 123–172). Rijeka: In Tech Open. https://doi.org/10.5772/53831.

    Chapter  Google Scholar 

  • Blackshaw, R., Johnson, E., Gan, Y., May, W., McAndrew, D., Barthet, V., et al. (2011). Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Canadian Journal of Plant Science, 91, 889–896.

    Google Scholar 

  • Brosse, N., Dufour, A., Meng, X., Sun, Q., & Ragauskas, A. (2012). Miscanthus: A fast-growing crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining, 6, 580–598.

    CAS  Google Scholar 

  • Brown, R. (2009). Biochar production technology. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science and technology. London: Earthscan.

    Google Scholar 

  • Brown, T. R. (2015). A techno-economic review of thermochemical cellulosic biofuel pathways. Bioresource Technology, 178, 166–176.

    PubMed  CAS  Google Scholar 

  • Brown, J. J., Cybulska, I., Chaturvedi, T., & Thomsen, M. H. (2014). Halophytes for the production of liquid biofuels. In M. A. Khan et al. (Eds.), Sabkha ecosystems: Volume IV: Cash crop halophyte and biodiversity conservation, tasks for vegetation science (Vol. 47, pp. 67–72). Dordrecht: Springer.

    Google Scholar 

  • Campbell, R. M., Anderson, N. M., Daugaard, D. E., & Naughton, H. T. (2018). Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty. Applied Energy, 230, 330–343.

    Google Scholar 

  • Chandrasekaran, M., Kannathasan, K., & Venkatesalu, V. (2008). Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae. Zeitschrift für Naturforschung C, 63, 331–336.

    CAS  Google Scholar 

  • Chaturvedi, T., Uratani, J. M., Thomsen, M. H., & Rodríguez, J. (2013). Evaluation of pre-treatment conditions of biomass waste from the halophyte Salicornia bigelovii cultivated in sea water. http://www.redbiogas.cl/wp-content/uploads/2013/07/IWA-12159.pdf

  • Cherubini, F., & Jungmeier, G. (2010). LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. The International Journal of Life Cycle Assessment, 15, 53–66.

    CAS  Google Scholar 

  • Choi, D., Lim, G. S., Piao, Y. L., Choi, O. Y., Cho, K. A., Park, C. B., & Cho, H. (2014). Characterization, stability, and antioxidant activity of Salicornia herbaciea seed oil. Korean Journal of Chemical Engineering, 31, 2221–2228.

    CAS  Google Scholar 

  • Cicogna, M. P. V., Khanna, M., & Zilberman, D. (2017). Prospects for biofuel production in Brazil: Role of market and policy uncertainties. In Handbook of bioenergy economics and policy: Volume II (p. 2017). New York: Springer.

    Google Scholar 

  • D’Oca, M. G., Morón-Villarreyes, J. A., Lemões, J. S., & Costa, C. S. (2012). Fatty acids composition in seeds of the South American glasswort Sarcocornia ambigua. Anais da Academia Brasileira de Ciências, 84, 865–870.

    PubMed  Google Scholar 

  • Daniel, D. J., Ellison, C. R., Bursavich, J., Benbow, M., Favrot, C., Blazier, M. A., & Boldor, D. (2018). An evaluative comparison of lignocellulosic pyrolysis products derived from various parts of Populus deltoides trees and Panicum virgatum grass in an inductively heated reactor. Energy Conversion and Management, 171, 710–720.

    CAS  Google Scholar 

  • Dao, C. N., Mupondwa, E., Tabil, L., Li, X., & Castellanos, E. C. (2018). A review on techno-economic analysis and life-cycle assessment of second generation bioethanol production via biochemical processes (CSBE18-215). The Canadian Society for Bioengineering. Guelph, Ontario, Canada: CSBE/SCGAB Annual General Meeting and Technical Conference.

    Google Scholar 

  • Daylan, B., & Ciliz, N. (2016). Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel. Renewable Energy, 89, 578–587.

    CAS  Google Scholar 

  • Debez, A., Belghith, I., Friesen, J., Montzka, C., & Elleuche, S. (2017). Facing the challenge of sustainable bioenergy production: Could halophytes be part of the solution? Journal of Biological Engineering, 11, 27.

    PubMed  PubMed Central  Google Scholar 

  • Demirbas, A. (2017). Tomorrow’s biofuels: Goals and hopes. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39, 673–679.

    CAS  Google Scholar 

  • Demırbas, A. (2017). The social, economic, and environmental importance of biofuels in the future. Energy Sources, Part B: Economics, Planning, and Policy, 12(1), 47–55.

    Google Scholar 

  • Drabik, D., & Venus, T. E. U. (2019). Biofuel policies for road and rail transportation sector. In EU bioeconomy economics and policies: Volume II (pp. 257–276). Cham: Palgrave Macmillan.

    Google Scholar 

  • Dzidzienyo, P., Bastidas-Oyanedel, J. R., & Schmidt, J. (2018). Pyrolysis kinetics of the arid land biomass halophyte Salicornia bigelovii and Phoenix dactylifera using thermogravimetric analysis. Energies, 11, 2283.

    Google Scholar 

  • Elbersen, B., Startisky, I., Hengeveld, G., Schelhaas, M. J., Naeff, H., & Böttcher, H. (2012). Atlas of EU biomass potentials. Deliverable 3.3: Spatially detailed and quantified overview of EU biomass potential taking into account the main criteria determining biomass availability from different sources. Biomass Futures, 2012. https://ec.europa.eu/energy/intelligent/projects/sites/ieeprojects/files/projects/documents/biomass_futures_atlas_of_technical_and_economic_biomass_potential_en.pdf

  • Elsebaie, E. M., Elsanat, S. Y., Gouda, M. S., & Elnemr, K. M. (2013). Oil and fatty acids composition in glasswort Salicornia fruticosa seeds. Journal of Applied Chemistry, 4, 6–9.

    Google Scholar 

  • Feuvre, P. L., Teter, J., Gorner, M., Scheffer, S., Cazzola, P., Petropoulos, A., Cassisa, C., & Schuitmaker, R. (2019). Transport biofuels: Tracking clean energy progress. https://www.iea.org/tcep/transport/biofuels/. Last updated Monday, 27 May 2019.

  • Firouzabadi, A. G., Jafari, M., Assareh, M. H., Arzani, H., & Javadi, S. A. (2015). Investigation on the potential of halophytes as a source of edible oil case study: Suaeda aegyptiaca and Halostachys. Journal of Biodiversity and Environmental Sciences (JBES), 6, 370–376.

    Google Scholar 

  • Folayan, A. J., Anawe, P. A. L., & Ayeni, A. O. (2019). Synthesis and characterization of Salicornia bigelovii and Salicornia brachiata halophytic plants oil extracted by supercritical CO2 modified with ethanol for biodiesel production via enzymatic transesterification reaction using immobilized Candida antarctica lipase catalyst in tert-butyl alcohol (TBA) solvent. Cogent Engineering, 6, 1625847.

    Google Scholar 

  • Gao, K., Boiano, S., Marzocchella, A., & Rehmann, L. (2014). Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). Bioresource Technology, 174, 176–181.

    PubMed  CAS  Google Scholar 

  • Hao, H., Liu, Z., Zhao, F., Ren, J., Chang, S., Rong, K., & Du, J. (2018). Biofuel for vehicle use in China: Current status, future potential and policy implications. Renewable and Sustainable Energy Reviews, 82, 645–653.

    Google Scholar 

  • Harvey, M., & Pilgrim, S. (2011). The new competition for land: Food, energy, and climate change. Food Policy, 36, S40–S51.

    Google Scholar 

  • Hejazi, M. I., Voisin, N., Liu, L., Bramer, L. M., Fortin, D. C., Hathaway, J. E., et al. (2015). 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating. Proceedings of the National Academy of Sciences, 112, 10635–10640.

    CAS  Google Scholar 

  • Imam, T., & Capareda, S. (2012). Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. Journal of Analytical and Applied Pyrolysis, 93, 170–177.

    CAS  Google Scholar 

  • Ingle, A. P., Ingle, P., Gupta, I., & Rai, M. (2019). Socioeconomic impacts of biofuel production from lignocellulosic biomass. In Sustainable bioenergy (pp. 347–366). Amsterdam: Elsevier.

    Google Scholar 

  • Irfan, M., Chen, Q., Yue, Y., Pang, R., Lin, Q., Zhao, X., & Chen, H. (2016). Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures. Bioresource Technology, 211, 457–463.

    PubMed  CAS  Google Scholar 

  • Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., & Ashwath, N. (2012). Biofuels production through biomass pyrolysis – A technological review. Energies, 5, 4952–5001.

    CAS  Google Scholar 

  • Joshi, A., Kanthaliya, B., & Arora, J. (2018). Halophytes of Thar Desert: Potential source of nutrition and feedstuff. International Journal of Bioassays, 8, 5674–5683.

    Google Scholar 

  • Joshi, A., Kanthaliya, B., & Arora, J. (2019). Current scenario of potential renewable energy sources for sustainable development in India. The Journal of Plant Science Research, 35, 205–214.

    Google Scholar 

  • Khoo, H. H., Ee, W. L., & Isoni, V. (2016). Bio-chemicals from lignocellulose feedstock: Sustainability, LCA and the green conundrum. Green Chemistry, 18, 1912–1922.

    CAS  Google Scholar 

  • Kinder, J. D., & Rahmes, T. (2009). Evaluation of bio-derived synthetic paraffinic kerosene (bio-SPK). The Boeing Company Sustainable Biofuels Research & Technology Program. http://www.safug.org/assets/docs/biofuel-testing-summary.pdf

  • Knothe, G., & Moser, B. R. (2015). Fatty acid profile of seashore mallow (Kosteletzkya pentacarpos) seed oil and properties of the methyl esters. European Journal of Lipid Science and Technology, 117, 1287–1294.

    CAS  Google Scholar 

  • Kovarik, B. (2013). Biofuels in history. In B. P. Singh (Ed.), Biofuels crops (pp. 1–22). Wellington: Center for Bioscience International (CABI).

    Google Scholar 

  • Kumar, K. H., Razack, S., Nallamuthu, I., & Khanum, F. (2014). Phytochemical analysis and biological properties of Cyperus rotundus L. Industrial Crops and Products, 52, 815–826.

    Google Scholar 

  • Lask, J., Wagner, M., Trindade, L. M., & Lewandowski, I. (2019). Life cycle assessment of ethanol production from miscanthus: A comparison of production pathways at two European sites. GCB Bioenergy, 11, 269–288.

    CAS  Google Scholar 

  • Li, S., Li, J., Hu, X., Li, M., Yan, Z., Li, S., & Fan, C. (2013). Study on enzymatic saccharification of Suaeda salsa as a new potential feedstock for bio-ethanol production. Journal of the Taiwan Institute of Chemical Engineers, 44, 904–910.

    CAS  Google Scholar 

  • Liu, T., Huffman, T., Kulshreshtha, S., McConkey, B., Du, Y., Green, M., & Geng, X. (2017). Bioenergy production on marginal land in Canada: Potential, economic feasibility, and greenhouse gas emissions impacts. Applied Energy, 205, 477–485.

    Google Scholar 

  • MacMohan, J. (2019). The seven most promising aviation biofuels. https://www.forbes.com/sites/jeffmcmahon/2019/01/24/the-7-most-promising-biofuels-for-airlines/#6b6e9f96174d

  • Mamat, R., Sani, M. S. M., Khoerunnisa, F., & Kadarohman, A. (2019). Target and demand for renewable energy across 10 ASEAN countries by 2040. The Electricity Journal, 32, 106670.

    Google Scholar 

  • McLaughlin, S. B., & Kszos, L. A. (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy, 28, 515–535.

    Google Scholar 

  • Meng, F., & McKechnie, J. (2019). Challenges in quantifying greenhouse gas impacts of waste-based biofuels in EU and US biofuel policies: Case study of butanol and ethanol production from municipal solid waste. Environmental Science & Technology, 53, 12141–12149.

    CAS  Google Scholar 

  • Moioli, E., Salvati, F., Chiesa, M., Siecha, R. T., Manenti, F., Laio, F., & Rulli, M. C. (2018). Analysis of the current world biofuel production under a water–food–energy nexus perspective. Advances in Water Resources, 121, 22–31.

    PubMed  PubMed Central  Google Scholar 

  • Molino, A., Larocca, V., Chianese, S., & Musmarra, D. (2018). Biofuels production by biomass gasification: A review. Energies, 11, 811.

    Google Scholar 

  • Mood, S. H., Golfeshan, A. H., Tabatabaei, M., Jouzani, G. S., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93.

    Google Scholar 

  • Morales, M., Quintero, J., Conejeros, R., & Aroca, G. (2015). Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance. Renewable and Sustainable Energy Reviews, 42, 1349–1361.

    CAS  Google Scholar 

  • Moser, B. R., Dien, B. S., Seliskar, D. M., & Gallagher, J. L. (2013). Seashore mallow (Kosteletzkya pentacarpos) as a salt-tolerant feedstock for production of biodiesel and ethanol. Renewable Energy, 50, 833–839.

    CAS  Google Scholar 

  • Muench, S., & Guenther, E. (2013). A systematic review of bioenergy life cycle assessments. Applied Energy, 112, 257–273.

    Google Scholar 

  • Murphy, R., Woods, J., Black, M., & McManus, M. (2011). Global developments in the competition for land from biofuels. Food Policy, 36, S52–S61.

    Google Scholar 

  • O’Connell, A., Kousoulidou, M., Lonza, L., & Weindorf, W. (2019). Considerations on GHG emissions and energy balances of promising aviation biofuel pathways. Renewable and Sustainable Energy Reviews, 101, 504–515.

    Google Scholar 

  • Patel, M., Zhang, X., & Kumar, A. (2016). Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renewable and Sustainable Energy Reviews, 53, 1486–1499.

    CAS  Google Scholar 

  • Patel, M. K., Pandey, S., Brahmbhatt, H. R., Mishra, A., & Jha, B. (2019). Lipid content and fatty acid profile of selected halophytic plants reveal a promising source of renewable energy. Biomass and Bioenergy, 124, 25–32.

    CAS  Google Scholar 

  • Prasad, S., Kumar, S., Sheetal, K. R., & Venkatramanan, V. (2020). Global climate change and biofuels policy: Indian perspectives. In Global climate change and environmental policy (pp. 207–226). Singapore: Springer.

    Google Scholar 

  • Premjet, S., Pumira, B., & Premjet, D. (2013). Determining the potential of inedible weed biomass for bio-energy and ethanol production. BioResources, 8, 701–716.

    CAS  Google Scholar 

  • Rathod, M. R., Shethia, B. D., Pandya, J. B., & Dodiya, P. J. (2013). Variation in oil composition of Salicornia brachiata seeds from different locations of Saurashtra seacoast region. JLST, 45, 86–91.

    CAS  Google Scholar 

  • Ren, S., Lei, H., Wang, L., Bu, Q., Chen, S., & Wu, J. (2014). Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts. RSC Advances, 4, 10731–10737.

    CAS  Google Scholar 

  • Righi, S. (2019). Life cycle assessments of waste-based biorefineries – A critical review. In Life cycle assessment of energy systems and sustainable energy technologies (pp. 139–154). Cham: Springer.

    Google Scholar 

  • Saikia, R., Chutia, R. S., Kataki, R., & Pant, K. K. (2015). Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials. Bioresource Technology, 188, 265–272.

    PubMed  CAS  Google Scholar 

  • Sharma, V., Joshi, A., Ramawat, K. G., & Arora, J. (2017). Bioethanol production from halophytes of Thar Desert: A “green gold”. In S. K. Basu, P. Zandi, & S. K. Chalaras (Eds.), Environment at crossroads: Challenges, dynamics and solutions (pp. 219–235). Iran: Haghshenass Publishing.

    Google Scholar 

  • Sims, R., Taylor, M., Saddler, J., & Mabee, W. (2008). From 1st- to 2nd-generation biofuel technologies: An overview of current industry and RD&D activities (pp. 16–20). Paris: International Energy Agency.

    Google Scholar 

  • Smichi, N., Messaoudi, Y., Moujahed, N., & Gargouri, M. (2016). Ethanol production from halophyte Juncus maritimus using freezing and thawing biomass pre-treatment. Renewable Energy, 85, 1357–1361.

    CAS  Google Scholar 

  • Tao, L., Aden, A., Elander, R. T., Pallapolu, V. R., Lee, Y. Y., Garlock, R. J., & Ladisch, M. R. (2011). Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresource Technology, 102, 11105–11114.

    PubMed  CAS  Google Scholar 

  • Tawfik, M. M., Elhamid, E. M. A., Gobarah, M. E., & Hassanein, M. M. (2013). Testing of some halophytic plants for forage, biofuel production and soil bioremediation. Journal of Environmental Treatment Techniques, 1, 183–189.

    Google Scholar 

  • Tawfik, M. M., Haggag, W. M., Mirvat, E., Kabish, M. O., & El Habbasha, S. F. (2015). Determination of nutritional value and lignocellulosic biomass of six halophytic plants grown under saline irrigation in South Sinai. International Journal of ChemTech Research, 8, 37–42.

    CAS  Google Scholar 

  • Ubando, A. T., Rivera, D. R. T., Chen, W. H., & Culaba, A. B. (2019). A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes. Bioresource Technology, 291, 121837.

    PubMed  CAS  Google Scholar 

  • Vishwakarma, R., & Banerjee, R. (2016). Cyperus for bioethanol. Lignocellulose, 5, 94–105.

    Google Scholar 

  • Wang, L., Zhang, K., Huang, W., Han, W., & Tian, C. Y. (2011). Seed oil content and fatty acid composition of annual halophyte Suaeda acuminata: A comparative study on dimorphic seeds. African Journal of Biotechnology, 10, 19106–19108.

    CAS  Google Scholar 

  • Wang, L., Zhao, Z. Y., Zhang, K., & Tian, C. Y. (2012). Oil content and fatty acid composition of dimorphic seeds of desert halophyte Suaeda aralocaspica. African Journal of Agricultural Research, 7, 1910–1914.

    Google Scholar 

  • Wang, P., Chen, Y. M., Wang, Y., Lee, Y. Y., Zong, W., Taylor, S., & Wang, Y. (2019). Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated Switchgrass with Clostridium saccharoperbutylacetonicum N1-4. Applied Energy, 236, 551–559.

    CAS  Google Scholar 

  • Weber, D. J. R., Ansari, R., Gul, B., & Khan, M. A. (2007). Potential of halophytes as source of edible oil. Journal of Arid Environments, 68, 315–321.

    Google Scholar 

  • Yan, M., Pan, G. X., Li, L. Q., & Zou, J. W. (2010). An overview of the potential role of reed (Phragmites australis) wetlands interrestrial carbon sequestration of China. Chinese Agricultural Science Bulletin, 26, 320–323.

    Google Scholar 

  • Yang, B. Y., Cheng, M. H., Ko, C. H., Wang, Y. N., Chen, W. H., Hwang, W. S., & Chang, F. C. (2014). Potential bioethanol production from Taiwanese chenopods (Chenopodium formosanum). Energy, 76, 59–65.

    CAS  Google Scholar 

  • Yue, Y., Lin, Q., Irfan, M., Chen, Q., & Zhao, X. (2016). Characteristics and potential values of bio-oil, syngas and biochar derived from Salsola collina Pall. in a fixed bed slow pyrolysis system. Bioresource Technology, 220, 378–383.

    PubMed  CAS  Google Scholar 

  • Yue, Y., Lin, Q., Irfan, M., Chen, Q., Zhao, X., & Li, G. (2017). Characteristics and potential values of bio-products derived from switchgrass grown in a saline soil using a fixed-bed slow pyrolysis system. BioResources, 12, 6529–6544.

    CAS  Google Scholar 

  • Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71, 475–501.

    CAS  Google Scholar 

  • Zarrouk, M., El Almi, H., Youssef, N. B., Sleimi, N., Smaoui, A., Miled, D. B., & Abdelly, C. (2003). Lipid composition of seeds of local halophytes: Cakile maritima, Zygophyllum album and Crithmum maritimum. In Cash crop halophytes: Recent studies (pp. 121–124). Dordrecht: Springer.

    Google Scholar 

  • Zhao, S. H., Ma, T. S., & Zhang, H. B. (2011). Butanol production from halophyte seepweed Suaeda salsa by simultaneous saccharification and fermentation. Asian Journal of Chemistry, 23(12), 5285.

    CAS  Google Scholar 

  • Zhu, J. Y., & Zhuang, X. S. (2012). Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Progress in Energy and Combustion Science, 38(4), 583–598.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Joshi, A., Kanthaliya, B., Arora, J. (2020). Halophytes: The Nonconventional Crops as Source of Biofuel Production. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_126-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_126-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics