Skip to main content

Morphological and Anatomical Traits of Halophytes

Adaptive Versus Phylogenetic Value

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

The halophytes are plant species that have particular morpho-anatomical characteristics that allow them to complete their biological cycles in an environment that has very stringent conditions. In general, in these species, morpho-anatomical adaptations, or morpho-anatomical functional traits, are related to preventing the loss of water by evapotranspiration, with the dilution of salts absorbed in excess and, in some cases, with the excretion of salts. These characters are mostly found in leaves and stems, since they are the plant organs that are most rigorously exposed to environmental conditions. Specifically among the most important characters are reduced leaves or their absence, large number of eglandular and/or glandular trichomes, presence of salt glands, greater development of support tissues, presence of aqueous tissue, and development of atypical secondary growth, among others. Beyond these generalizations, it should be taken into account that there are not morpho-anatomical characters that define all the halophytes; each species has achieved adaptation to the environment from the characteristics that developed within the evolutionary lineage to which it belongs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akhani, H., Trimborn, P., & Ziegler, H. (1997). Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographycal and taxonomial importance. Plant Systematics and Evolution, 206, 187–221.

    Google Scholar 

  • Balfour, E. (1965). Anomalous secondary thickening in Chenopodiaceae, Nyctaginaceae and Amaranthaceae. Phytomorphology, 15, 111–122.

    Google Scholar 

  • Bonzani, N. E., Filippa, E. M., & Barboza, G. E. (2003). Estudio anatómico comparativo de tallo en algunas especies de Verbenaceae. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Botánica, 74, 31–45.

    Google Scholar 

  • Breckle, S. W. (1986). Studies on halophytes from Iran and Afghanistan. II Ecology of halophytes along salt gradients. Proceedings of the Royal Society of Edinburgh, 89, 203–215.

    Google Scholar 

  • Canny, M. (2012). Water loss from leaf mesophyll stripped of the epidermis. Functional Plant Biology, 39, 421–434.

    PubMed  Google Scholar 

  • Carlquist, S. (2007). Succesive cambia revisited: Ontogeny, histology, diversity, and functional significance. Journal of the Torrey Botanical Society, 134, 301–332.

    Google Scholar 

  • Carolin, R. C., Jacobs, S. W. L., & Vesk, M. (1975). Leaf structure in Chenopodiaceae. Botanische Jahrbucher fur Systematik, 95, 226–255.

    Google Scholar 

  • Delf, E. M. (1915). The meaning of xerophily. Journal of Ecology, 3, 110–121.

    Google Scholar 

  • Eggli, U., & Nyffeler, R. (2009). Living under temporarily arid conditions-succulence as an adaptive strategy. Bradleya, 27, 13–36.

    Google Scholar 

  • Ehleringer, J. R., & Monson, R. K. (1993). Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology, Evolution, and Systematics, 24, 411–439.

    Google Scholar 

  • Evert, R. E. (2006). Esau’s plant anatomy. Meristems, cells, and tissues of the plant body-their structure, function, and development. Wiley, New Jersey, USA.

    Google Scholar 

  • Fahmy, G. M. (1997). Leaf anatomy and its relation to the ecophysiology of some non-succulent desert plants from Egypt. Journal of Arid Environments, 36, 499–525.

    Google Scholar 

  • Fahn, A., & Zimmermann, M. H. (1982). Development of the successive cambia in Atriplex halimus (Chenopodiaceae). Botanical Gazette, 143, 353–357.

    Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. The New Phytologist, 179, 945–963.

    CAS  PubMed  Google Scholar 

  • Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology, 37, 604–612.

    Google Scholar 

  • García, M., Jáuregui, D., & Medina, E. (2008). Adaptaciones anatómicas foliares en especies de Angiospermas que crecen en la zona costera del estado Falcón (Venezuela). Acta Botánica Venezuelica, 31, 291–306.

    Google Scholar 

  • Grigore, M. N., & Toma, C. (2008a). Ecological anatomy of halophyte species from the Chenopodiaceae family. WSEAS MABE, 1, 62–66.

    Google Scholar 

  • Grigore, M. N., & Toma, C. (2008b). Ecological anatomy investigations related to some halophyte species from Moldavia. Romanian Journal of Biology –Plant Biology, 53, 23–30.

    Google Scholar 

  • Grigore, M. N., & Toma, C. (2017). Anatomical adaptations of halophytes. A review of classic literature and recent findings. Springer, Cham, Switzerland.

    Google Scholar 

  • Grigore, M. N., Toma, C., Zamfirache, M. M., Boscaiu, M., Olteanu, Z., & Cojocaru, D. (2012). Ecological anatomy in halophytes with C4 photosynthesis: Discussing adaptative features in endangered ecosystems. Carpathian Journal of Earth and Environmental, 7, 13–21.

    Google Scholar 

  • Grigore, M. N., Ivanescu, L., & Toma, C. (2014). Halophytes: An integrative anatomical study. Springer, Cham, Switzerland.

    Google Scholar 

  • Johnson, H. (1975). Plant pubescense: An ecological perspective. The Botanical Review, 41, 233–258.

    Google Scholar 

  • Kadereit, G., Mucina, L., & Freitag, H. (2006). Phylogeny of Salicornioideae (Chenopodiaceae): Diversification, biogeography and evolutionary trends in leaf and flower morphology. Taxon, 55, 617–642.

    Google Scholar 

  • Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D., & Bresta, P. (2019). Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure-function coordination. Journal of Forest Research, 31, 1–12.

    Google Scholar 

  • Labidi, N., Ammari, M., Mssedi, D., Benzerti, M., Snoussi, S., & Abdelly, C. (2010). Salt excretion in Suaeda fruticosa. Acta Biologica Hungarica, 61, 299–312.

    PubMed  Google Scholar 

  • Landrum, J. V. (2006). Wide-band tracheids in genera of Portulacaceae: Novel, non-xylary tracheids possibly evolved as an adaptation to water stress. Journal of Plant Research, 119, 497–504.

    PubMed  Google Scholar 

  • Lev Yadun, S. (1997). Fibres and fibre-sclereids in wild type Arabidopsis thaliana. Annals of Botany, 80, 125–129.

    Google Scholar 

  • Liphschitz, N., & Waisel, Y. (1974). Existence of salt glands in various genera of the Graminea. The New Phytologist, 73, 507–513.

    Google Scholar 

  • Ogburn, R. M., & Edwards, E. J. (2010). The ecological water-use strategies of succulent plants. Advances in Botanical Research, 55, 179–225.

    Google Scholar 

  • Parkhurst, D. F. (1978). The adaptative significance of stomatal occurrence on one or both surfaces of leaves. Journal of Ecology, 66, 367–383.

    Google Scholar 

  • Parkhust, D. F., & Loucks, O. L. (1972). Optimal leaf size in relation to environment. Journal of Ecology, 60, 505–537.

    Google Scholar 

  • Patil, A. V., Lokhande, V. H., Suprasanna, P., Bapat, V. A., & Jadhav, J. P. (2012). Sesuvium portulacastrum (L.) L.: A potential halophyte for the degradation of toxic textile dye, green HE4B. Planta, 235, 1051–1063.

    CAS  PubMed  Google Scholar 

  • Pérez Cuadra, V. (2012). Anatomía ecológica de la vegetación del Salitral de la Vidriera. Tesis doctoral, Universidad Nacional del Sur, Argentina.

    Google Scholar 

  • Pérez Cuadra, V., & Cambi, V. N. (2014). Ocurrencia de caracteres anatómicos funcionales foliares y caulinares en 35 especies xero-halófitas. Boletín de la Sociedad Argentina de Botánica, 49, 347–359.

    Google Scholar 

  • Pérez Cuadra, V., & Hermann, P. M. (2009). Comparación anatómica de Nitrophila australis var. australis y Nitrophila occidentalis (Chenopodiaceae). Boletín de la Sociedad Argentina de Botánica, 44, 329–342.

    Google Scholar 

  • Pérez Cuadra, V., & Hermann, P. M. (2014). Anatomía foliar y caulinar de tres Saliconieae (Chenopodiaceae) halófilas argentinas. Phyton, 83, 369–377.

    Google Scholar 

  • Polić, D., Luković, J., Zorić, L., Merkulov, L., & Knežević, A. (2009). Morpho-anatomical differentiation of Suaeda maritima (L.) Dumort. 1827. (Chenopodiaceae) populations from inland and maritime saline area. Central European Journal of Biology, 4, 117–129.

    Google Scholar 

  • Pyykkö, M. (1966). The leaf anatomy of East Patagonian xeromorphic plants. Annales Botanici Fennici, 3, 453–622.

    Google Scholar 

  • Reinoso, H., Sosa, L., Ramírez, L., & Luna, V. (2004). Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Canadian Journal of Botany, 82, 618–628.

    Google Scholar 

  • Reinoso, H., Sosa, L., Reginato, M., & Luna, V. (2005). Histological alterations induced by sodium sulfate in the vegetative anatomy of Prosopis stombulifera (Lam.) Benth. WJAS, 1, 109–119.

    Google Scholar 

  • Robert, E. M. R., Schmitz, N., Boreren, I., Driessens, T., Herremans, K., De Mey, J., Van de Casteele, E., Beeckman, H., & Koedam, N. (2011). Succesive cambia: A developmental oddity or an adaptive structure? PLoS One, 6, e16558.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saadeddin, R., & Doddema, H. (1986). Anatomy of the “extreme” halophyte Arthrocnemum fruticosum (L.) Moq. In relation to its physiology. Annals of Botany, 57, 531–544.

    Google Scholar 

  • Salama, F. M., El-Naggar, S. M., & Ramadan, T. (1999). Salt glands of some halophytes in Egypt. Phyton, 39, 91–105.

    CAS  Google Scholar 

  • Schweingruber, F. H. (2007). Stem anatomy of Caryophyllaceae. Flora, 202, 281–292.

    Google Scholar 

  • Seddon, G. (1974). Xerophytes, xeromorphs and sclerophylls: The history of some concepts in ecology. Biological Journal of the Linnean Society, 6, 65–87.

    CAS  PubMed  Google Scholar 

  • Skelton, R. P., Midgley, J. J., Nyaga, J. M., Johnson, S. M., & Cramer, D. M. (2012). Is leaf pubescence of Cape Proteaceae a xeromorphic or radiation-protective trait. Australian Journal of Botany, 60, 104–113.

    Google Scholar 

  • Vendramini, F., Díaz, S., Gurvich, D. E., Wilson, P. J., Thompson, K., & Hodgson, J. G. (2002). Leaf traits as indicators of resource-use strategy in floras with succulent species. The New Phytologist, 154, 147–157.

    Google Scholar 

  • Wahid, A. (2003). Physiological significance of morpho-anatomical features of the halophytes with particular reference to cholistan flora. International Journal of Agriculture and Biology, 5, 207–212.

    Google Scholar 

  • Ward, D. (2009). The biology of deserts. Oxford University Press, Wilshire, Great Britain.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanesa Pérez Cuadra .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pérez Cuadra, V., Verolo, M., Cambi, V. (2020). Morphological and Anatomical Traits of Halophytes. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_120-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_120-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics