Skip to main content

Seed Germination Strategies of Mediterranean Halophytes Under Saline Condition

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

The study of the ecological strategies adopted by seed plants to ensure their success in different environments is closely related to germination ecology. This implies a careful knowledge of ecophysiology of seeds and, therefore, also of interaction between plants and the complexity of external factors. In particular, the environmental conditions of the area where a plant grows and produces seeds represent the main factors that influence successful seedling establishment. The physical-chemical features of habitats, and therefore their heterogeneity, affect the behavior of seeds in different ways. In addition to the timing of seed production, they can induce or terminate dormancy and/or germination and influence the germination pattern of different seeds in the same plant and so the composition and dispersal of soil seed banks. Salinity is a major abiotic stress affecting growth and plant productivity worldwide, constituting one of the main topics of study in the field of plant physiology. Halophytes are the plants that have the availability to survive and develop in different types of saline habitats. In this chapter, we consider some examples to illustrate the main adaptive strategies used by the seeds of halophytes on ecophysiological perspectives to survive in habitats affected by high levels of salinity. The focus is on the species that live in the brackish or salt coastal areas of the Medit erranean Basin. On these environments, the salt stress may act synergistically with intense anthropic pressure, generating profound alterations in the ecosystem and threatening the survival of the plant species very sensitive to the effects of climate change also. The results show the main diverse strategies, such as dormancy cycling, seed heteromorphism, and recovery capacity, from saline shock, favoring the chances of seed survival. The interaction between temperature and salinity during germination was also discussed assessing its crucial role as an ecological strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adam, P. (1977). The ecological significance of “halophytes” in the Devensian flora. The New Phytologist, 78, 237–244.

    Article  Google Scholar 

  • Barton, L. V. (1965). Seed dormancy: General survey of dormancy types in seeds, and dormancy imposed by external agents. In A. Lang (Ed.), Differenzierung und Entwicklung/Differentiation and development (pp. 2346–2367). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Baskin, J. M., & Baskin, C. C. (2004). A classification system for seed dormancy. Seed Science Research, 14, 1–16.

    Article  Google Scholar 

  • Baskin, C. C., & Baskin, J. M. (2014). Seeds: Ecology, biogeography, and evolution of dormancy and germination (2nd ed.). San Diego: Academic/Elsevier.

    Google Scholar 

  • Belderok, B. (1961). Studies on dormancy in wheat. Proceedings of the International Seed Testing Association, 26, 697–760.

    Google Scholar 

  • Berger, A. (1985). Seed dimorphism and germination behavior in Salicornia patula. Vegetation, 61, 137–143.

    Article  Google Scholar 

  • Bewley, J. D. (1997). Seed germination and dormancy. Plant Cell, 9, 1055–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bocchieri, E., De Martis, B., & Marchioni, A. (1981). Parapholis incurva (L) CE Hubbard (Gramineae); il contributo sulla ecologia della germinazione. Bollettino della societa sarda di scienze naturali, 20, 131–138.

    Google Scholar 

  • Costa, A. S., Dias, L. S., & Dias, A. S. (2019). Imbibition, germination, and early seedling growth responses of light purple and yellow seeds of red clover to distilled water, sodium chloride, and nutrient solution. Sci, 1, 51.

    Article  Google Scholar 

  • Debez, A., Belghith, I., Pich, A., Taamalli, W., Abdelly, C., & Braun, H. P. (2018). High salinity impacts germination of the halophyte Cakile maritima but primes seeds for a rapid germination upon stress release. Physiologia Plantarum, 164, 134–144.

    Article  CAS  PubMed  Google Scholar 

  • Del Vecchio, S., Mattana, E., Acosta, A. T. R., & Bacchetta, G. (2012). Seed germination responses to varying environmental conditions and provenances in Crucianella maritima L., a threatened coastal species. Comptes Rendus Biologies, 335, 26–31.

    Article  PubMed  Google Scholar 

  • Del Vecchio, S., Porceddu, M., & Fantinato, E. et al. (2018). Risposte di germinazione delle popolazioni mediterranee di Cakile maritima a luce, salinità e temperatura. Folia Geobot, 53, 417–428.

    Google Scholar 

  • Delgado Fernandez, I. C., Gimenez Luque, E., Gomez Mercado, F., & Pedrosa, W. (2016). Influence of temperature and salinity on the germination of Limonium tabernense Erben from Tabernas Desert (Almeria, SE Spain). Flora, 218, 68–74.

    Article  Google Scholar 

  • Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K., & Willis, G. C. (2010). Germination, post germination adaptation, and species ecological ranges. Annual Review of Ecology, Evolution, and Systematics, 41, 293–319.

    Article  Google Scholar 

  • Fenner, M. (1985). Seed ecology. New York: Chapmann and Hall.

    Book  Google Scholar 

  • Fenu, G., Cogoni, D., Ulian, T., & Bacchetta, G. (2013). The impact of human trampling on a threatened coastal Mediterranean plant: The case of Anchusa littorea Moris (Boraginaceae). Flora, 208, 104–110.

    Article  Google Scholar 

  • Fernández, I. C. D., Luque, E. G., Mercado, F. G., & Marrero, J. M. (2015). Germination responses of Limonium insigne(Coss.) Kuntze to salinity and temperature. Pakistan Journal of Botany, 47(3), 807–812.

    Google Scholar 

  • Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. The New Phytologist, 171, 501–523.

    Article  CAS  PubMed  Google Scholar 

  • Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology, 37, 604–612.

    Article  Google Scholar 

  • Gasparri, R., Casavecchia, S., Galié, M., Pesaresi, S., Soriano, P., Estrelles, E., & Biondi, E. (2016). Germination pattern of Salicornia patula as an adaptation to environmental conditions of the specific populations. Plant Sociology, 53, 91–104.

    Google Scholar 

  • Grouzis, M., Berger, A., & Heim, G. (1976). Polymorphisme et germination des graines chez trois espèces annuelles du genre Salicornia. Oecol Platzt, 11, 41–52.

    Google Scholar 

  • Gul, B., Ansari, R., Flowers, T. J., & Khan, M. A. (2013). Germination strategies of halophyte seeds under salinity. Environmental and Experimental Botany, 92, 4–18.

    Article  CAS  Google Scholar 

  • Gulzar, S., Khan, M. A., & Ungar, I. A. (2001). Effect of temperature and salinity on the germination of Urochondra setulosa. Seed Science and Technology, 29, 21–29.

    Google Scholar 

  • Guma, I. R., Padrón–Mederos, M. A., Santos–Guerra, A., & Reyes–Betancort, J. A. (2010). Effect of temperature and salinity on germination of Salsola vermiculata L. (Chenopodiaceae) from Canary Islands. Journal of Arid Environments, 74, 708–711.

    Article  Google Scholar 

  • Gutterman, Y. (2012). Survival strategies of annual desert plants. Springer Science & Business Media, Springer GmbH & Co. KG: Berlin/Heidelberg, Germany.

    Google Scholar 

  • Hassan, A. L., Estrelles, M., Soriano, E., López-Gresa, P., Bellés, M. P., Boscaiu, J. M., & Vicente, O. (2017). Unraveling salt tolerance mechanisms in halophytes: A comparative study on four Mediterranean Limonium species with different geographic distribution patterns. Frontiers in Plant Science, 8, 1438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, Z. Y., Liu, S. S., Bradford, K. J., Huxman, T. E., & Venable, D. L. (2016). The contribution of germination functional traits to population dynamics of a desert plant community. Ecology, 97, 250–261.

    Article  PubMed  Google Scholar 

  • Khan, A. A. (1977). Preconditioning, germination and performance of seeds. In A. A. Khan (Ed.), The physiology and biochemistry of seed dormancy and germination (pp. 283–316). New York: Elsevier/North–Holland Biomedical Press.

    Google Scholar 

  • Khan, M. A., & Gul, B. (1998). High salt tolerance in germinating dimorphic seeds of Arthrocnemum indicum. International Journal of Plant Sciences, 159, 826–832.

    Article  Google Scholar 

  • Khan, M. A., & Ungar, I. A. (1984). The effect of salinity and temperature on germination of polymorphic seeds and growth of Atriplex triangularis. American Journal of Botany, 71, 481–489.

    Article  Google Scholar 

  • Khan, M. A., & Ungar, I. A. (1986). Life history and population dynamics of Atriplex triangularis. Vegetation, 66, 17–25.

    Article  Google Scholar 

  • Khan, M. A., & Ungar, I. A. (1997). Effects of light, salinity, and thermoperiod on the seed germination of halophytes. Canadian Journal of Botany, 75, 835–841.

    Article  Google Scholar 

  • Koller, D. (1957). Germination regulating mechanisms in some desert seeds, IV. Atriplex dimorphostegia Kar. et Kir. Ecology, 38, 2–13.

    Article  Google Scholar 

  • Kranner, I., & Seal, C. E. (2013). Salt stress, signalling and redox control in seeds. Functional Plant Biology, 40, 848–859.

    Article  CAS  PubMed  Google Scholar 

  • Lang, A. (1965). Effects of some internal and external conditions on seed germination. In Differenzierung und Entwicklung/Differentiation and development (pp. 2495–2540). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Lang, G. A., Early, J. D., Martin, G. C., & Darnell, R. L. (1987). Endo–, para– and ecodormancy: Physiological terminology and classification for dormancy research. Horticultural Science, 22, 371–377.

    Google Scholar 

  • Liu, R., Wang, L., Tanveer, M., & Song, J. (2018). Seed heteromorphism: An important adaptation of halophytes for habitat heterogeneity. Frontiers in Plant Science, 9, 1515.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lombardi, T., & Onnis, A. (1999). Seasonal changes in the germination responses of Hordeum maritimum and H. murinum seeds in relation to salinity, temperature and after–ripening time. Plant Biosystems, 133, 289–296.

    Article  Google Scholar 

  • Lombardi, T., Bedini, S., & Onnis, A. (1996). The germination characteristics of a population of Zannichellia palustris subsp, pedicellata. Aquatic Botany, 54, 287–296.

    Article  Google Scholar 

  • Lombardi, T., Fochetti, T., & Onnis, A. (1998). Germination of Briza maxima L. seeds: Effects of temperature, light, salinity and seed harvesting time. Seed Science and Technology, 26, 463–470.

    Google Scholar 

  • Lombardi, T., Bedini, S., & Bertacchi, A. (2019). Germination ecology of the aromatic halophyte Artemisia caerulescens L.: influence of abiotic factors and seed after-ripening time. Folia Geobotanica 54 (1-2), 115–124.

    Google Scholar 

  • Long, R. L., Gorecki, M. J., Renton, M., Scott, J. K., Colville, L., Goggin, D. E., Commander, L. E., Westcott, D. A., Cherry, H., & Finch-Savage, W. E. (2015). The ecophysiology of seed persistence: A mechanistic view of the journey to germination or demise. Biological Reviews, 90, 31–59.

    Article  PubMed  Google Scholar 

  • Luciani, F., Cristaudo, A., & Aricò, D. (2001). Germination ecology of three Plantago L. (Plantaginaceae) species living in a saline environment. Plant Biosystems, 135, 213–221.

    Article  Google Scholar 

  • Manzoor, S., Hameed, A., Khan, M. A., & Gul, B. (2017). Seed germination ecology of a medicinal halophyte Zygophyllum propinquum: Responses to abiotic factors. Flora, 233, 163–170.

    Article  Google Scholar 

  • Melendo, M., & Giménez, E. (2019). Seed germination responses to salinity and temperature in Limonium supinum (Plumbaginaceae), an endemic halophyte from Iberian Peninsula. Plant Biosystems, 153, 257–263.

    Article  Google Scholar 

  • Meletti, P. (1964). Nuove prospettive nello studio dei fattori che controllano la germinazione dei semi. Giornale Botanico Italiano, 71, 372–384.

    Article  Google Scholar 

  • Nikolaeva, M. G. (1977). Factors controlling the seed dormancy pattern. In A. A. Khan (Ed.), The physiology and biochemistry of seed and germination (pp. 51–74). Amsterdam: Elsevier/North– Holland Biomedical Press.

    Google Scholar 

  • Onnis, A., & Pelosini, F. (1976). Althenia filiformis Petit: ecologia e significato dell’andamento della germinazione in relazione alle variazioni di temperatura e salinità del substrato nel periodo estivo–autunnale. Giornale Botanico Italiano, 110, 127–136.

    Article  Google Scholar 

  • Penfield, S., & Mac Gregor, D. R. (2017). Effects of environmental variation during seed production on seed dormancy and germination. Journal of Experimental Botany, 68, 819–825.

    Article  CAS  PubMed  Google Scholar 

  • Phillipupillai, J., & Ungar, I. A. (1984). The effect of seed dimorphism on the germination and survival of Salicornia europaea L. populations. American Journal of Botany, 71, 542–549.

    Article  Google Scholar 

  • Pujol, J. A., Calvo, J. F., & Ramírez–Díaz, L. (2000). Recovery of germination from different osmotic conditions by four halophytes from southeastern Spain. Annals of Botany, 85, 279–286.

    Article  Google Scholar 

  • Qasem, J. R. (2019). Weed seed dormancy: The ecophysiology and survival strategies. In J. C. Jimenez–Lopez (Ed.), Seed dormancy and germination. IntechOpen. Available from: https://www.intechopen.com/books/seed-dormancy-and-germination/weed-seed-dormancy-the-ecophysiology-and-survival-strategies

  • Redondo-Gómez, S., Mateos-Naranjo, E., Cambrollé, J., Luque, T., Figueroa, M. E., & Davy, A. J. (2008). Carry–over of differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens. Annals of Botany, 102, 103–112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosbakh, S., & Poschlod, P. (2015). Initial temperature of seed germination as related to species occurrence along a temperature gradient. Functional Ecology, 29, 5–14.

    Article  Google Scholar 

  • Šajna, N., Regvar, M., Kaligari, S., Škvorc, Z., & Kaligari, M. (2013). Germination characteristics of Salicornia patula Duval–Jouve, S. emerici Duval–Jouve, and S. veneta Pign et Lausi and their occurrence in Croatia. Acta Botanica Croatica, 72, 347–358.

    Article  Google Scholar 

  • Seal, C. E., Barwell, L. J., Flowers, T. J., Wade, E. M., & Pritchard, H. W. (2018). Seed germination niche of the halophyte Suaeda maritima to combined salinity and temperature is characterised by a halothermal time model. Environmental and Experimental Botany, 155, 177–184.

    Article  CAS  Google Scholar 

  • Ungar, I. A. (1971). Atriplex patula var. hastata seed dimorphism. Rhodora, 73, 548–551.

    Google Scholar 

  • Ungar, I. A. (1979). Seed dimorphism in Salicornia europaea L. Botanical Gazette, 140, 102–108.

    Article  Google Scholar 

  • Ungar, I. A. (1982). Germination ecology of halophytes. In D. N. Sen & K. S. Rajpurchit (Eds.), Contributions to the ecology of halophytes (pp. 143–154). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ungar, I. A. (1987). Population ecology of halophyte seeds. The Botanical Review, 53, 301–334.

    Article  Google Scholar 

  • Van Vierssen, W. (1982a). The ecology of communities dominated by Zannichellia taxa in western Europe. I. Characterization and autoecology of the Zannichellia taxa. Aquatic Botany, 12, 103–155.

    Article  Google Scholar 

  • Van Vierssen, W. (1982b). The ecology of communities dominated by Zannichellia taxa in western Europe. II. Distribution, synecology and productivity aspects in relation to environmental factors. Aquatic Botany, 13, 385–483.

    Article  Google Scholar 

  • Wei, Y., Dong, M., & Huang, Z. Y. (2007). Seed polymorphism, dormancy and germination of Salsola affinis (Chenopodiaceae), a dominant desert annual inhabiting the Junggar Basin of Xinjiang, China. Australian Journal of Botany, 55, 464–470.

    Google Scholar 

  • Yan, C., Yang, M., & Yan, W. (2011). Comparative germination of Tamarix ramosissima spring and summer seeds. EXCLI Journal, 10, 198–201.

    PubMed  PubMed Central  Google Scholar 

  • Zehra, A., & Khan, M. A. (2007). Comparative effect of NaCl and seasalt on germination of halophytic grass Phragmites karka at different temperature regimes. Pakistan Journal of Botany, 39, 1681–1694.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Lombardi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lombardi, T., Bedini, S. (2020). Seed Germination Strategies of Mediterranean Halophytes Under Saline Condition. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_119-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_119-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics