Skip to main content

Halophytes as an Option for the Restoration of Degraded Areas and Landscaping

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

The presence of saline soils is widely extended at worldwide level. Plants grown under saline conditions suffer an osmotic and ionic effect at cellular level resulting in yield decrease. These effects are exacerbated especially in ornamental plants due to the salt sensitivity and the loss of aesthetic value due to the presence of visual damages associated to Na and Cl, resulting in losses of incomes for the growers. On the other hand, anthropogenic activities have reduced the environmental diversity; therefore the restoration and creation of new green areas are crucial. Moreover, the increase of salinity has resulted in a decline of the use of native plants in urban and peri-urban environments. Halophytes comprise several botanical families (123), and they are distributed in a broad range of environments, from arid regions to coastal marshes. Under these circumstances and considering the high degree of adaptability among halophytes to survive in different habitats, the use of halophytes with attractiveness, floral color, or fragrance can be an environmental and sustainable choice for the restoration of urban and degraded areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelly, C., Barhoumi, Z., Ghnaya, T., Debez, A., Hamed, K. B., Ksouri, R., Talbi, O., Zribi, F., Ouerghi, Z., Smaoui, A., Huchzermeyer, B., & Grignon, C. (2006). Potential utilisation of halophytes for the rehabilitation and valorisation of salt-affected areas in Tunisia. In Biosaline agriculture and salinity tolerance in plants (pp. 163–172). Basel: Birkhäuser Basel.

    Chapter  Google Scholar 

  • Acosta-Motos, J. R., Álvarez, S., Barba-Espín, G., Hernández, J. A., & Sánchez-Blanco, M. J. (2014). Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants. Plant Physiology and Biochemistry, 85, 41–50.

    Article  PubMed  CAS  Google Scholar 

  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sánchez-Blanco, M. J., & Hernández, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7, 18.

    Article  CAS  Google Scholar 

  • Ali, A., Iqbal, N., Ali, F., & Afzal, B. (2012). Alternanthera bettzickiana (regel) G. Nicholson, a potential halophytic ornamental plant: Growth and physiological adaptations. Flora-Morphology, Distribution, Functional Ecology of Plants, 207, 318–321.

    Article  Google Scholar 

  • Álvarez-Rogel, J., Martínez-Sánchez, J. J., Carrasco, L., & Marín, C. M. (2006). Vegetal bioindicators for monitoring hydrological and saline gradients in a coastal dune salt marsh of southeast Spain: A conceptual model. Wetlands, 26, 703–717.

    Article  Google Scholar 

  • Azadi, P., Bagheri, H., Nalousi, A. M., Nazari, F., & Chandler, S. F. (2016). Current status and biotechnological advances in genetic engineering of ornamental plants. Biotechnology Advances, 34, 1073–1090.

    Article  PubMed  Google Scholar 

  • Bañón, S., Miralles, J., Franco, J. A., Ochoa, R., & Sánchez-Blanco, M. J. (2011). Effects of diluted and pure treated wastewater on the growth, physiological status and visual quality of potted lantana and polygala plants. Scientia Horticulturae, 129, 869–876.

    Article  Google Scholar 

  • Bauer, N. (2015). A Limonium gmelinii (Willd.) Kuntze subsp. hungaricum (Klokov) Soó alkalmi megjelenései útpadkákon. Apró közlemények. Kitaibelia, 20, 300–310.

    Article  Google Scholar 

  • Beaton, L., & Dudley, S. A. (2014). Tolerance to salinity and manganese in three common roadside species. International Journal of Plant Sciences, 165, 37–51.

    Article  Google Scholar 

  • Bellavance, M. E., & Brisson, J. (2010). Spatial dynamics and morphological plasticity of common reed (Phragmites australis) and cattails (Typha sp.) in freshwater marshes and roadside ditches. Aquatic Botany, 93, 129–134.

    Article  Google Scholar 

  • Ben Hamed, K., Ben Youssef, N., Ranieri, A., Zarrouk, M., & Abdelly, C. (2005). Changes in content and fatty acid profiles of total lipids and sulfolipids in the halophyte Crithmum maritimum under salt stress. Journal of Plant Physiology, 162, 599–602.

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt-Romermann, A., Kircher, M., Kudernatsch, T., Jacobi, G., & Fischer, A. (2006). Changed vegetation composition in coniferous forests near to motorways in southern Germany: The effect of traffic-born pollution. Environmental Pollution, 143, 572–581.

    Article  PubMed  CAS  Google Scholar 

  • Brisson, J., de Blois, S., & Lavoie, C. (2010). Roadside as invasion pathway for common reed (Phragmites australis). Invasive Plant Science and Management, 3, 506–514.

    Article  Google Scholar 

  • Bustan, A., Pasternak, D., Pirogova, I., Durikov, M., deVries, T. T., Meccawi, S., & Degen, A. A. (2005). Evaluation of saltgrass as a fodder crop for saline environments. Journal of the Science of Food and Agriculture, 85, 2077–2084.

    Article  CAS  Google Scholar 

  • Carter, C. T., & Grieve, C. M. (2008). Salt tolerance of floriculture crops. In Ecophysiology of high salinity tolerant plants (pp. 279–287). Dordrecht: Springer.

    Google Scholar 

  • Carver, S. T., Arnold, M. A., Byrne, D. H., Armitage, A. R., Lineberger, R. D., & King, A. R. (2014). Effects of saline irrigation on four native Texas plant species with ornamental potential for coastal and arid climate landscapes. Journal of Arid Land Studies, 24, 213–221.

    Google Scholar 

  • Cassaniti, C., & Romano, D. (2011). The use of halophytes for Mediterranean landscaping. Proceedings of the European COST Action FA901. The European Journal of Plant Science and Biotechnology, 5, 58–63.

    Google Scholar 

  • Cassaniti, C., Leonardi, C., & Flowers, T. J. (2009). The effects of sodium chloride on ornamental shrubs. Scientia Horticulturae, 122, 586–593.

    Article  CAS  Google Scholar 

  • Cassaniti, C., Romano, D., Hop, M. E. C. M., & Flowers, T. J. (2013). Growing floricultural crops with brackish water. Environmental and Experimental Botany, 92, 165–175.

    Article  CAS  Google Scholar 

  • Celentano, D., & Rousseau, C. A. G. (2016). Integral ecological restoration: Restoring the link between human culture and nature. Ecological Restoration, 34, 94–97.

    Article  Google Scholar 

  • Chandler, S. F., & Sanchez, C. (2012). Genetic modification; the development of transgenic ornamental plant varieties. Plant Biotechnology Journal, 10, 891–903.

    Article  PubMed  Google Scholar 

  • Cheeseman, J. M. (2015). The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. The New Phytologist, 206, 557–570.

    Article  PubMed  Google Scholar 

  • Chowdhury, M. H., & Lasker, M. S. (2018). Roadside landscaping with native plants in the Czech Republic: A review. Horticulture International Journal, 2, 76–82.

    Google Scholar 

  • Clary, J., Savé, R., Biel, C., & De Herralde, F. (2004). Water relations in competitive interactions of Mediterranean grasses and shrubs. The Annals of Applied Biology, 144, 149–155.

    Article  Google Scholar 

  • Collart, A. J., Palma, M. A., & Carpio, C. E. (2013). Consumer response to point of purchase advertising for local brands. Journal of Agricultural and Applied Economics, 45, 229–242.

    Article  Google Scholar 

  • Daoud, S., Elbrik, K., Tachbibi, N., Bouqbis, L., Brakez, M., & Harrouni, M. C. (2016). The potential use of halophytes for the development of marginal dry areas in Morocco. In Halophytes for food security in dry lands (pp. 141–156). Academic.

    Google Scholar 

  • Devi, S., Kumar, A., Arya, S. S., Kumari, A., Kumar, N., Chand, G., Mann, A., & Goyal, V. (2019). Economic utilization and potential of halophytes. In Ecophysiology, abiotic stress responses and utilization of halophytes (pp. 195–220). Singapore: Springer.

    Chapter  Google Scholar 

  • Dite, D., & Ditetova, Z. (2016). Halophytes spreading along roadsides of northern Slovakia. Thaiszia: Journal of Botany, 26, 165–172.

    Google Scholar 

  • Dobres, M. S. (2011). Prospects for commercialisation of transgenic ornamentals. In B. Mou & R. Scorza (Eds.), Transgenic horticultural crops challenges and opportunities (pp. 305–316). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Eganathan, P. S. R., Subramanian, H. M., Latha, R., & Srinivasa Rao, C. (2006). Oil analysis in seeds of Salicornia brachiata. Industrial Crops and Products, 23, 177–179.

    Article  CAS  Google Scholar 

  • El Shaer, H. M. (2010). Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Ruminant Research, 91, 3–12.

    Article  Google Scholar 

  • Eom, S. H., DiTommaso, A., & Weston, L. A. (2013). Effects of soil salinity in the growth of Ambrosia artemisiifolia biotypes collected from roadside and agricultural field. Journal of Plant Nutrition, 36, 2191–2204.

    Article  CAS  Google Scholar 

  • Farieri, E., Toscano, S., Ferrante, A., & Romano, D. (2016). Identification of ornamental shrubs tolerant to saline aerosol for coastal urban and peri-urban greening. Urban Forestry & Urban Greening, 18, 9–18.

    Article  Google Scholar 

  • Ferguson, L., & Grattan, S. R. (2005). How salinity damages citrus: Osmotic effects and specific ion toxicities. HortTechnology, 15, 95–99.

    Article  Google Scholar 

  • Ferrante, A., Trivellini, A., Malorgio, F., Carmassi, G., Vernieri, P., & Serra, G. (2011). Effect of seawater on leaves of six plant species potentially useful for ornamental purposes in coastal areas. Scientia Horticulturae, 128, 332–341.

    Article  Google Scholar 

  • Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55, 307–319.

    Article  PubMed  CAS  Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. The New Phytologist, 179, 945–963.

    Article  PubMed  CAS  Google Scholar 

  • Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology, 28, 89–121.

    Article  CAS  Google Scholar 

  • Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology, 37, 604–612.

    Article  Google Scholar 

  • Forman, R. T. T., Sperling, D., Bissonette, J. A., Clevenger, A. P., Cutshall, P., Dale, V. H., Fahrig, L., France, R., Goldman, C. R., Heanue, K., Jones, J. A., Swanson, F. J., Turrentine, T., & Winter, T. C. (2003). Road ecology: Science and solutions. Washington, DC: Island Press.

    Google Scholar 

  • Franco, J. A., Cros, V., Bañón, S., & Martínez-Sánchez, J. J. (2002). Nursery irrigation regimes and establishment irrigation affect the postplanting growth of Limonium cossonianum in semiarid conditions. Israel Journal of Plant Sciences, 50, 25–32.

    Article  Google Scholar 

  • Frangi, P., & Nicola, S. (2005). Study of propagation by cutting of five species native to South Africa. Acta Horticulturae, 683, 313–318.

    Article  Google Scholar 

  • Gairola, S., Bhatt, A., & El-Keblawy, A. (2015). A perspective on potential use of halophytes for reclamation of salt-affected lands. Wulfenia, 22, 88–97.

    Google Scholar 

  • García-Caparrós, P., & Lao, M. T. (2018). The effects of salt stress on ornamental plants and integrative cultivation practices. Scientia Horticulturae, 240, 430–439.

    Article  CAS  Google Scholar 

  • García-Caparrós, P., Llanderal, A., El-Tarawy, A., Correia, P. J., Pestana, M., & Lao, M. T. (2016). Irrigation with drainage solutions improves the growth and nutrients uptake in Juncus acutus. Ecological Engineering, 95, 237–244.

    Article  Google Scholar 

  • García-Caparrós, P., Llanderal, A., Pestana, M., Correia, P. J., & Lao, M. T. (2017). Lavandula multifida response to salinity: Growth, nutrient uptake, and physiological changes. Journal of Plant Nutrition and Soil Science, 180, 96–104.

    Article  CAS  Google Scholar 

  • García-Caparrós, P., Llanderal, A., Pestana, M., Correia, P. J., & Lao, M. T. (2018). Nutritional and physiological responses of the dicotyledonous halophyte Sarcocornia fruticosa to salinity. Australian Journal of Botany, 65, 573–581.

    Article  CAS  Google Scholar 

  • Gelbard, J. L., & Belnap, J. (2003). Roads as conduits for exotic plant invasions in a semiarid landscape. Conservation Biology, 17, 420–432.

    Article  Google Scholar 

  • Ghassemi, F., Jakeman, A. J., & Nix, H. A. (1995). Salinization of land and water resources. Canberra: University of New South Wales Press, Ltd.

    Google Scholar 

  • Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18, 227–255.

    Article  Google Scholar 

  • Golafshani, M. K., Ravanbakhsh, H., Ara, H., & Nikou, S. (2019). Studying environmental factors on halophyte and xerophyte plants establishment in desert region (case study: Semnan, Iran). International Journal of Agricultural and Environmental, 5, 56–70.

    Google Scholar 

  • Grahn, P., & Stigsdotter, U. K. (2010). The relation between perceived sensory dimensions of urban green space and stress restoration. Lands Urban Planning, 94, 264–275.

    Article  Google Scholar 

  • Grieve, C. M., Poss, J. A., Grattan, S. R., Shouse, P. J., Lieth, J. H., & Zeng, L. (2005). Productivity and mineral nutrition of Limonium species irrigated with saline wastewaters. Hortscience, 40, 654–658.

    Article  Google Scholar 

  • Haan, N. L., Hunter, M. R., & Hunter, M. D. (2012). Investigating predictors of plant establishment during roadside restoration. Restoration Ecology, 20, 315–321.

    Article  Google Scholar 

  • Hamed, K. B., Magné, C., & Abdelly, C. (2014). From halophyte research to halophytes farming. In Sabkha ecosystems (pp. 135–142). Dordrecht: Springer.

    Google Scholar 

  • Hansen, M. J., & Clevenger, A. P. (2005). The influence of disturbance and habitat on the presence of non-native plant species along transport corridors. Biological Conservation, 125, 249–259.

    Article  Google Scholar 

  • Heywood, V. (2003). Conservation and sustainable use of wild species as sources of new ornamentals. Acta Horticulturae, 598, 43–53.

    Article  Google Scholar 

  • Hohla, M., & Melzer, H. (2003). Floristisches von den Autobahnen der Bundeslän der Salzburg, Oberösterreich, Niederösterreich und Burgenland. Linzer Biol Beitr, 35, 1307–1326.

    Google Scholar 

  • Hohla, M., Diewald, W., & Király, B. G. (2015). Limonium gmelini – eine Steppenpflanze an österreichischen Autobahnen sowie weitere Neuigkeiten zur Flora Österreichs. Stapfia, 103, 127–150.

    Google Scholar 

  • Iqbal, M. A. (2015). An assessment of quinoa (Chenopodium quinoa Willd.) potential as a grain crop on marginal lands in Pakistan. American-Eurasian Journal of Agricultural & Environmental Sciences, 15, 1.

    Google Scholar 

  • Jiménez-Becker, S., Ramírez, M., & Plaza, B. M. (2019). The influence of salinity on the vegetative growth, osmolytes and chloride concentration of four halophytic species. Journal of Plant Nutrition, 42, 1838–1849.

    Article  CAS  Google Scholar 

  • Kishi-Kaboshi, M., Aida, R., & Sasaki, K. (2018). Genome engineering in ornamental plants: Current status and future prospects. Plant Physiology and Biochemistry, 131, 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Koyro, H. W., Khan, M. A., & Lieth, H. (2011). Halophytic crops: A resource for the future to reduce the water crisis? Emirates Journal of Food and Agriculture, 23, 1–16.

    Article  Google Scholar 

  • Lewis, L., & McCourt, R. (2004). Green algae and the origin of land plants. American Journal of Botany, 91, 1535–1556.

    Article  PubMed  Google Scholar 

  • Li, Y., Yu, J., Ning, K., Du, S., Han, G., Qu, F., Wang, G., Fu, Y., & Zhan, C. (2014). Ecological effects of roads on the plant diversity of coastal wetland in the Yellow River Delta. The Scientific World Journal, Article ID 952051.

    Google Scholar 

  • Litalien, A., & Zeeb, B. (2020). Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. The Science of the Total Environment, 698, 134235.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Tang, J., Wang, W., Zhang, Y., Yuan, H., & Huang, S. (2018). Transcriptome analysis reveals complex response of the medicinal/ornamental halophyte Iris halophila pall to high environmental salinity. Ecotoxicology and Environmental Safety, 165, 250–260.

    Article  PubMed  CAS  Google Scholar 

  • Lokhande, V. H., Gor, B. K., Desai, N. S., Nikam, T. D., & Suprasanna, P. (2013). Sesuvium portulacastrum, a plant for drought, salt stress, sand fixation, food and phytoremediation. A review. Agronomy for Sustainable Development, 33, 329–348.

    Article  CAS  Google Scholar 

  • Manousaki, E., & Kalogerakis, N. (2011). Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Industrial and Engineering Chemistry Research, 50, 656–660.

    Article  CAS  Google Scholar 

  • Marcum, K. B. (2014). Salinity tolerant turfgrasses for biosaline urban landscape agriculture. In Sabkha ecosystems (pp. 223–232). Dordrecht: Springer.

    Google Scholar 

  • Martínez-Sánchez, J. J., Ferrandis, P., Trabaud, L., Galindo, R., Franco, J. A., & Herranz, J. M. (2003). Comparative root system structure of post-fire Pinus halepensis Mill. and Cistus monspeliensis L. samplings. Plant Ecology, 168, 309–320.

    Article  Google Scholar 

  • Miyamoto, S., & White, J. M. (2002). Foliar salt damage of landscape plants induced by sprinkler irrigation. College Station: TWRI TR-1202, Texas Agric. Expt. Stat., Agric. Res. and Ext. Ctr. at El Paso, Texas Water Res. Instit..

    Google Scholar 

  • Miyamoto, S., White, J. M., Bader, R., & Omelas, D. (2001). El Paso guidelines for landscape uses of reclaimed water with elevated salinity. College Station: Texas A&M Univ. Agric. Res. Center at El Paso, Texas Coop. Ext..

    Google Scholar 

  • Moore, P. (1982). Coastal plants take to the road. Nature, 297, 537–538.

    Article  Google Scholar 

  • Morales, M. A., Alarcón, J. J., Torrecillas, A., & Sánchez-Blanco, M. J. (2000). Growth and water relations of Lotus creticus plants as affected by salinity. Biologia Plantarum, 43, 413–417.

    Article  CAS  Google Scholar 

  • Munns, R. (2008). Living with salinity. The New Phytologist, 179, 903–905.

    Article  PubMed  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Physiology, 59, 651–681.

    CAS  Google Scholar 

  • Niederwieser, J. G., Kleynhans, R., & Hancke, F. L. (2002). Development of a new flower bulb crop in South Africa. Acta Horticulturae, 570, 67–73.

    Article  Google Scholar 

  • Ozturk, M., Altay, V., Gucel, S., & Guvensen, A. (2014). Halophytes in the East Mediterranean–their medicinal and other economical values. In Sabkha ecosystems (pp. 247–272). Dordrecht: Springer.

    Google Scholar 

  • Panta, S., Flowers, T. J., Lane, P., Doyle, R., Haros, G., & Shabala, S. (2014). Halophyte agriculture: Success stories. Environmental and Experimental Botany, 107, 71–83.

    Article  Google Scholar 

  • Paranychianakis, N. V., & Chartzoulakis, K. S. (2005). Irrigation of Mediterranean crops with saline water: From physiology to management practices. Agriculture, Ecosystems and Environment, 106, 171–187.

    Article  CAS  Google Scholar 

  • Payen, S., Basset-Mens, C., Nuñez, M., Follain, S., Grunberger, O., Marlet, S., Perret, S., & Roux, P. (2016). Salinisation impacts in life cycle assessment: A review of challenges and options towards their consistent integration. International Journal of Life Cycle Assessment, 21, 577–594.

    Article  CAS  Google Scholar 

  • Pessarakli, M., Breshears, D. D., Walworth, J., Field, J. P., & Law, D. J. (2017). Candidate halophytic grasses for addressing land degradation: Shoot responses of Sporobolus airoides and Paspalum vaginatum to weekly increasing NaCl concentration. Arid Land Research and Management, 31, 169–181.

    Article  CAS  Google Scholar 

  • Poortinga, W., Spence, A., Whitmarsh, L., Capstick, S., & Pidgeon, N. F. (2011). Uncertain climate: An investigation into public scepticism about anthropogenic climate change. Global Environmental Change, 21, 1015–1024.

    Article  Google Scholar 

  • Qadir, M., Quillerou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., & Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38, 282–295.

    Article  Google Scholar 

  • Robles, A. B., Allegretti, L. I., & Passera, C. B. (2002). Coronilla juncea is both a nutritive fodder shrub and useful in the rehabilitation of abandoned Mediterranean marginal farmland. Journal of Arid Environments, 50, 381–392.

    Article  Google Scholar 

  • Rodriguez, P., Torrecillas, A., Morales, M. A., Ortuno, M. F., & Sánchez-Blanco, M. J. (2005). Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environmental and Experimental Botany, 53, 113–123.

    Article  CAS  Google Scholar 

  • Rozema, J., & Flowers, T. J. (2008). Crops for a salinized world. Science, 322, 1478–1480.

    Article  PubMed  CAS  Google Scholar 

  • Sagi, B., & Erdei, L. (2002). Distinct physiological characteristics of two subspecies of Aster tripolium L. Acta Biologica Szegediensis, 46, 257–258.

    Google Scholar 

  • Salachna, P., & Piechocki, R. (2016). Effects of sodium chloride on growth and mineral nutrition of purpletop vervain. Journal of Ecological Engineering, 17, 148–152.

    Article  Google Scholar 

  • Santos, J., Al-Azzawi, M., Aronson, J., & Flowers, T. J. (2016). eHALOPH a database of salt-tolerant plants: Helping put halophytes to work. Plant & Cell Physiology, 57, 1–10.

    Article  CAS  Google Scholar 

  • Save, R. (2009). What is stress and how to deal with it in ornamental plants? Acta Horticulturae, 813, 241–254.

    Article  Google Scholar 

  • Schmidt, D., Dítětová, Z., Horváth, A., & Szűcs, P. (2016). Coastal newcomer on motorways: The invasion of Plantago coronopus L. in Hungary. Studia Botanica Hungarica, 47, 1–16.

    Article  Google Scholar 

  • Sera, B. (2008). Road vegetation in Central Europe – An example from the Czech Republic. Biologia, 63, 1081–1084.

    Article  Google Scholar 

  • Sera B (2010) Roadsides function as halophyte habitats in the landscape. In IV Czech-Slovak Scientific Conference Transport, Health and Environment. Blansko, November 2–3, 2010. Brno: Transport Research Centre, 242 pp.

    Google Scholar 

  • Shillo, R., Ding, M., Pasternak, D., & Zaccai, M. (2002). Cultivation of cut flower and bulb species with saline water. Scientia Horticulturae, 92, 41–54.

    Article  Google Scholar 

  • Singh, A. (2015). Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecological Indicators, 57, 128–130.

    Article  Google Scholar 

  • Singh, R. K., & Flowers, T. J. (2011). Physiology and molecular biology of the effects of salinity on rice. In M. Pessarakli (Ed.), Handbook of plant and crop stress (pp. 899–939). Boca Raton: CRC Press.

    Google Scholar 

  • Skultety, D., & Matthews, J. W. (2017). Urbanization and roads drive non-native plant invasion in the Chicago metropolitan region. Biological Invasions, 19, 2553–2566.

    Article  Google Scholar 

  • Stocker, O. (1928). Das Halophytenproblem. Ergebnisse der Biologie, 3, 265–353.

    Article  Google Scholar 

  • Teakle, N. L., & Tyerman, S. D. (2010). Mechanisms of Cl transport contributing to salt tolerance. Plant, Cell & Environment, 33, 566–589.

    Article  CAS  Google Scholar 

  • Valdez-Aguilar, L. A., Grieve, C. M., Razak-Mahar, A., McGiffen, M., & Merhaut, D. J. (2011). Growth and ion distribution is affected by irrigation with saline water in selected landscape species grown in two consecutive growing-seasons: Spring-summer and fall-winter. Hortscience, 46, 632–642.

    Article  CAS  Google Scholar 

  • Varone, L., Catoni, R., Bonito, A., Gini, E., & Gratani, L. (2017). Photochemical performance of Carpobrotus edulis in response to various substrate salt concentrations. South African Journal of Botany, 111, 258–266.

    Article  CAS  Google Scholar 

  • Ventura, Y., Wuddineh, W. A., Myrzabayeva, M., Alikulov, Z., Khozin-Goldberg, I., Shpigel, M., Samocha, T. M., & Sagi, M. (2011). Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Scientia Horticulturae, 128, 189–196.

    Article  CAS  Google Scholar 

  • Vicente, M. J., Conesa, E., Álvarez-Rogel, J., Franco, J. A., & Martínez-Sánchez, J. J. (2007). Effects of various salts on the germination of three perennial salt marsh species. Aquatic Botany, 87, 167–170.

    Article  CAS  Google Scholar 

  • Wrobel, M., Tomaszewicz, T., & Chudecka, J. (2006). Floristic diversity and spatial distribution of roadside halophytes along forest and field roads in Szczecin lowland (West Poland). Polish Journal of Ecology, 54, 303–309.

    Google Scholar 

  • Xue, Y., Wang, Y., & Wang, T. (2012). Physiological and biochemical mechanisms of an endemic halophyte Reaumuria trigyna maxim. Under salt stress. Acta Botanica Boreali-Occidentalia Sinica, 32, 136–142.

    CAS  Google Scholar 

  • Yang, Y., Guo, Z., Liu, Q., Tang, J., Huang, S., Dhankher, O. P., & Yuan, H. (2018). Growth, physiological adaptation, and NHX gene expression analysis of Iris halophila under salt stress. Environmental Science and Pollution Research, 25, 25207–25216.

    Article  PubMed  CAS  Google Scholar 

  • Yensen, N. P., & Biel, K. Y. (2006). Soil remediation via salt-conduction and the hypotheses of halosynthesis and photoprotection. In M. A. Khan & D. J. Weber (Eds.), Ecophysiology of high salinity tolerant plants (pp. 313–344). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Yue, C., Dennis, J. H., Behe, B. K., Hall, C. R., Campbell, B., & Lopez, R. G. (2011). Investigating consumer preference for organic, local, or sustainable plants. Hortscience, 46, 610–615.

    Article  Google Scholar 

  • Zeng, S. L., Zhang, T. T., Gao, Y., Li, B., Fang, C. M., Flory, S. L., & Zhao, B. (2012). Road effects on vegetation composition in a saline environment. Journal of Plant Ecology, 5, 206–218.

    Article  Google Scholar 

  • Zeng, S. L., Zhao, B., Zhang, T. T., & Ouyang, Z. T. (2019). Effects of road ditches on the vegetation composition in a saline environment. Landscape and Ecological Engineering, 16, 71–85.

    Article  Google Scholar 

  • Zervaki, D., Papanastasi, K., & Maloupa, E. (2009). A new theory-model strategy for new flower crops development. Acta Horticulturae, 813, 147–154.

    Article  Google Scholar 

  • Zorb, C., Geilfus, C. M., & Dietz, K. J. (2019). Salinity and crop yield. Plant Biology, 21, 31–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teresa Lao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

García-Caparrós, P., Llanderal, A., Lao, M.T. (2020). Halophytes as an Option for the Restoration of Degraded Areas and Landscaping. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_116-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_116-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics