Skip to main content

Lipids of Halophyte Species Growing in Lake Elton Region (South East of the European Part of Russia)

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

The chapter describes the specificity of lipid composition of halophytes growing in Prieltonie, one of the saline regions of the northern part of the Caspian lowland of Russia. In addition to salinization, the plants growing in this region experience the effects of intense insolation and high temperature – throughout most of their vegetative season. Soil salinization is one of the main factors affecting on the dominance of halophytes in the region. The adaptation of plants to salt stress is based on the ability of cells to control the transport of salt across membranes. The structural basis for cell membranes is provided by amphiphilic lipids with a polar hydrophilic group and nonpolar hydrophobic fatty acids, as well as steroid compounds. The halophyte groups (eu-, cryno-, and glycohalophytes) differ in their lipid composition: the contents of different groups and classes of lipids – as well as in the fatty acid composition. Lipids are specifically allocated in the plant cell. Glyceroglycolipids are predominantly concentrated in the cell plastids. Glycerophospholipids form the matrix of extra-chloroplastic membranes. The content of glycerolipids in the chloroplast membranes positively correlates with the size of the chloroplast and the content of photosynthetic pigments. The chloroplast and mitochondrial membranes of halophytes contain detergent-resistant regions enriched in sterols, ceramides, and saturated lipids. The differences in the lipid composition in membranes of cells, organelles, and microdomenes are associated with the specifics of salt metabolism of the halophyte species and indicate involvement of lipids in the adaptation of plants to the abiotic environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Car:

Carotenoids

Cer:

Cerebrosides

Chl (a, b):

Chlorophylls (a, b)

DGDG:

Digalactosyldiacylglycerol

DPG:

Diphosphatidylglycerol

DRM:

Detergent-resistant microdomenes

ES:

Esterified sterols

FA:

Fatty acids

GL:

Glyceroglycolipids

LHC:

Light-harvesting complexes

MDA:

Malonic dialdehyde

MGDG:

Monogalactosyldiacylglycerol

ML:

Membrane lipids

NL:

Neutral lipids

PA:

Phosphatidic acid

PA:

Photosynthetic apparatus

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PL:

Phospholipids

ROS:

Reactive oxygen species

SE:

Standard error

SQDG:

Sulfoquinovosyldiacylglycerol

ST:

Sterols

References

  • Allakhverdiev, S. I., Nishiyama, Y., Miyairi, S., Yamamoto, H., Inagaki, N., Kanesaki, Y., & Murata, N. (2002). Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiology, 130, 1443–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson, B., & Anderson, J. M. (1980). Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochimica et Biophysica Acta, 593, 427–440.

    Article  CAS  PubMed  Google Scholar 

  • Balnokin, Y. V., Myasoedov, N. A., Shamsutdinov, Z. S., & Shamsutdinov, N. Z. (2005). The role of Na+ and K+ in the maintenance of tissue hydration in the organs of halophytes of the family Chenopodiaceae of different ecological groups. Russian Journal of Plant Physiology, 52, 779–787.

    Article  CAS  Google Scholar 

  • Bassil, E., Ohto, M., Esumi, T., Tajima, H., Zhu, Z., Cagnac, O., Belmonte, M., Peleg, Z., Yamaguchi, T., & Blumwald, E. (2011). The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell, 23, 224–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2013). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65, 1241–1257.

    Article  PubMed  CAS  Google Scholar 

  • Cacas, J.-L., Furt, F., Le Guedard, M., Schmitter, J.-M., Bure, C., Gerbeau-Pissot, P., Moreau, P., Bessoule, J.-J., Simon-Plas, F., & Mongrand, S. (2012). Lipids of plant membrane rafts. Progress in Lipid Research, 5, 272–299.

    Article  CAS  Google Scholar 

  • Chen, J., Burke, J. J., Xin, Z., & Velten, J. (2006). Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance. Plant, Cell & Environment, 29, 1437–1448.

    Article  CAS  Google Scholar 

  • Chen, M., Cahoon, E. B., Saucedo-García, M., Plasencia, J., & Gavilanes-Ruíz, M. (2010). Plant sphingolipids: structure, synthesis, and function. In H. Wada & N. Murata (Eds.), Advances in photosynthesis and respiration (pp. 77–116). New York: Springer.

    Google Scholar 

  • Deme, B., Cataye, C., Block, M. A., Marechal, E., & Jouhet, J. (2014). Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. FASEB Journal of Research Communication, 28, 3373–3383.

    Google Scholar 

  • Dowhan, W., Bogdanov, M., & Mileykovskaya, E. (2016). Functional roles of lipids in membranes. In Biochemistry of lipids, lipoproteins and membranes (pp. 1–40). Nederland: Elsevier.

    Google Scholar 

  • Drin, G. (2014). Topological regulation of lipid balance in cells. Annual Review of Biochemistry, 83, 51–77.

    Article  CAS  PubMed  Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2015). Plant salt tolerance: Adaptations in halophytes. Annals of Botany, 115, 327–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garofalo, T., Manganelli, V., Grasso, M., Mattei, V., Ferri, A., Misasi, R., & Sorice, M. (2015). Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis. Apoptosis, 20, 621–634.

    Article  CAS  PubMed  Google Scholar 

  • Grigore, M.-N., Ivanescu, L., & Toma, C. (2014). Halophytes: An integrative anatomical study. Cham: Springer International Publishing.

    Google Scholar 

  • Hirayama, O., & Mihara, M. (1987). Characterization of membrane lipids of higher plants different in soil-tolerance. Journal of Agricultural and Biological Chemistry, 51, 3215–3221.

    CAS  Google Scholar 

  • Horvath, S. E., & Daum, G. (2013). Lipids of mitochondria. Progress in Lipid Research, 52, 590–614.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova, L. A. (2014). Adaptive features of leaf structure in plants of different ecological groups. Russian Journal of Ecology, 45, 107–115.

    Article  Google Scholar 

  • Ivanova, L. A., & Pyankov, V. I. (2002). Influence of environmental factors on the structural parameters of the leaf mesophyll. Bot J, 87, 17–28.

    Google Scholar 

  • Kerkeb, L., Donaire, J.P., Venema K., & Rodríguez‐Rosales, M.P. (2001). Tolerance to NaCl induces changes in plasma membrane lipid composition, fluidity and H+‐ATPase activity of tomato calli. Physiologia Plantarum, 113, 217–224.

    Google Scholar 

  • Khan, M. S. (2011). Role of sodium and hydrogen (Na+/H+) antiporters in salt tolerance of plants: Present and future challenges. African Journal of Biotechnology, 10, 13693–13704.

    Article  CAS  Google Scholar 

  • Kobayashi, I. K., Endo, K., & Wada, H. (2016). Roles of lipids in photosynthesis. In Y. Nakamura & Y. Li-Beisson (Eds.), Lipids in plant and algae development (pp. 21–49). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Labudda, M. (2013). Lipid peroxidtion as a biochemical marker for oxidative stress during drought. An effective tool for plant breeding. Warsaw, Poland: E-wydawnictwo.

    Google Scholar 

  • Laloi, M., Perret, A.-N., Chatre, L., Melser, S., Cantrel, C., Vaultier, M.-N., Zachowski, A., Bathany, K., Schmitter, J.-M., Vallet, M., Lessire, R., Hartmann, M.-A., & Moreau, P. (2007). Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiology, 143, 461–472.

    Google Scholar 

  • Los, D. A., & Murata, N. (2004). Membrane fluidity and its roles in the perception of environmental signals. Biochimica et Biophysica Acta, 1666, 142–157.

    Article  CAS  PubMed  Google Scholar 

  • Mansour, M. M. F., Salama, K. H. A., Al-Mutawa, M. M., & Abou Hadid, A. F. (2002). Effect of NaCl and polyamines on plasma membrane lipids of wheat roots. Biologia Plantarum, 45, 235–239.

    Article  CAS  Google Scholar 

  • Markham, J. E., Li, J., Cahoon, E. B., & Jaworski, J. G. (2006). Separation and identification of major plant sphingolipid classes from leaves. The Journal of Biological Chemistry, 281, 22684–22694.

    Article  CAS  PubMed  Google Scholar 

  • Michaelson, L. V. M., Napier, J. A., Molino, D., & Faure, J.-D. (2016). Plant sphingolipids: Their importance in cellular organization and adaption. Biochimica et Biophysica Acta, Molecular and Cell Biology of Lipids, 1861, 1329–1335.

    Article  CAS  Google Scholar 

  • Mokronosov, A. T., & Gavrilenko, V. F. (1992). Photosynthesis. Physiological, ecological and biochemical aspects. Moscow: Publishing house of Moscow University.

    Google Scholar 

  • Mongrand, S., Stanislas, T., Bayer, E.M., Lherminier, J., & Simon-Plas F. (2010). Membrane rafts in plant cells. Trends in Plant Science, 15, 656–663.

    Google Scholar 

  • Moreaua, R. A., Nyströmb, L., Whitaker, B. D., Winkler-Moser, J. K., Baer, D. J., Gebauer, S. K., & Hicks, K. B. (2018). Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Progress in Lipid Research, 70, 35–61.

    Article  CAS  Google Scholar 

  • Munnik, T., & Testerink, C. (2009). Plant phospholipid signaling: “In a nutshell”. Journal of Lipid Research, 50, S260–S265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura, Y., & Li-Beisson, Y. (2016). Lipids in plant and algae development. Cham: Springer Science+Business Media. 533 p.

    Book  Google Scholar 

  • Nesterov, V. N., Nesterkina, I. S., Rozentsvet, O. A., Ozolina, N. V., & Salyaev, R. K. (2017). Detection of lipid–protein microdomains (rafts) and investigation of their functional role in the chloroplast membranes of halophytes. Doklady. Biochemistry and Biophysics, 476, 1–3. (in Russia).

    Article  Google Scholar 

  • Nickels, J. D., Chatterjee, S., Stanley, C. B., Qian, S., Cheng, X., Myles, D. A. A., Standaert, R. F., Elkins, J. G., & Katsaras, J. (2017). The in vivo structure of biological membranes and evidence for lipid domains. PLoS Biology, 15, e2002214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozolina, N. V., Nesterkina, I. S., Kolesnikova, E. V., Salyaev, R. K., Nurminsky, V. N., Rakevich, A. L., Martynovich, E. F., & Chernyshov, M. Y. (2013). Tonoplast of Beta vulgaris L. contains detergent-resistant membrane microdomains. Planta, 237, 859–871.

    Article  CAS  PubMed  Google Scholar 

  • Ramani, B., Papenbrock, J., & Schmidt, A. (2004). Connecting sulfur metabolism and salt tolerance mechanisms in the halophytes Aster tripolium and Sesuvium portulacastrum. Tropical Ecology, 45, 173–182.

    Google Scholar 

  • Reginato, M. A., Castagna, A., Furlán, A., Castro, S., Ranieri, A., & Luna, V. (2014). Physiological responses of a halophytic shrub to salt stress by Na2SO4and NaCl: oxidative damage and the role of polyphenols in antioxidant protection. AoB Plants, 6, plu042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rozentsvet, O. A., Nesterov, V. N., & Bogdanova, E. S. (2014). Membrane-forming lipids of wild halophytes growing under the conditions of Prieltonie of South Russia. Phytochemistry, 105, 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Rozentsvet, О. A., Nesterov, V. N., & Bogdanova, Е. S. (2017). Structural, physiological, and biochemical aspects of salinity tolerance of halophytes. Russian Journal of Plant Physiology, 64, 464–477.

    Article  CAS  Google Scholar 

  • Rozentsvet, О., Nesterov, V., Bogdanova, Е., Kosobryukhov, А., Zubova, S., & Semenova, G. (2018). Structural and molecular strategy of photosynthetic apparatus organization of wild flora halophytes. Plant Physiology and Biochemistry, 129, 213–220.

    Article  CAS  PubMed  Google Scholar 

  • Rozentsvet, O., Nesterkina, I., Ozolina, N., & Nesterov, V. (2019). Detergent-resistant microdomains (lipid rafts) in endomembranes of the wild halophytes. Functional Plant Biology, 46, 869–876.

    Article  CAS  PubMed  Google Scholar 

  • Schaller, H. (2004). New aspects of sterol biosynthesis in growth and development of higher plants. Plant Physiology and Biochemistry, 42, 465–476.

    Article  CAS  PubMed  Google Scholar 

  • Shabala, S., & Mackay, A. (2011). Ion transport in halophytes. Advances in Botanical Research, 57, 151–199.

    Article  CAS  Google Scholar 

  • Shabala, S., Bose, J., & Hedrich, R. (2014). Salt bladders: Do they matter? Trends in Plant Science, 19, 687–691.

    Article  CAS  PubMed  Google Scholar 

  • Simons, K., & Sampaio, J. L. (2011). Membrane organization and lipid rafts. Cold Spring Harbor Perspectives in Biology, 3, a004697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sukhorukov, A. P. (2014). The caprology of the Chenopodiaceae family in connection with the problems of phylogeny, systematics, and diagnosis of its representatives. Tula, Russia: Grif & Co.

    Google Scholar 

  • Valitova, J. N., Sulkarnayeva, A. G., & Minibayeva, F. V. (2016). Plant sterols: Diversity, biosynthesis, and physiological functions. Biochemistry (Mosc), 81, 819–834.

    Article  CAS  Google Scholar 

  • Voznesenskaya, E. V., Chuong, S., Koteyeva, N., Franceschi, V. R., Freitag, H., & Edwards, G. E. (2007). Structural, biochemical and physiological characterization of C4 photosynthesis in species having two vastly different types of Kranz anatomy in genus Suaeda (Chenopodiaceae). Plant Biology, 9, 745–757.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., & Benning, C. (2012). Chloroplast lipid synthesis and lipid trafficking through ER–plastid membrane contact sites. Biochemical Society Transactions, 40, 457–463.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Seliskar, D. M., & Gallagher, J. L. (2005). The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress. American Journal of Botany, 92, 852–858.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, Y., Kai, S., Ohnishi, A., Tsumura, N., Ishikawa, T., Hori, H., Morita, N., & Ishikawa, Y. (2014). Quality control of PSII: Behavior of PSII in the highly crowded grana thylakoid under excessive light. Plant & Cell Physiology, 55, 206–1215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rozentsvet, O.A., Nesterov, V.N., Bogdanova, E.S. (2020). Lipids of Halophyte Species Growing in Lake Elton Region (South East of the European Part of Russia). In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_114-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_114-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics