Skip to main content

Nanomaterials from Marine Environments: An Overview

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Marine waters are extreme environment with high ionic intensity conditions, where nanoparticles can transform by adopting strikingly diverse behavior. The nanoparticles may be subject to rapid aggregation, instability as well as sedimentation that exterminate them from water column. Interactions between organic material and metal bearing nanoparticles might adversely change their distribution, physicochemical characteristics, and tenacity in water column. Accurate and sophisticated detection of engineered nanoparticles in marine environments is vital in evaluating the human and environmental threats as well as to create the regulatory standards of engineered nanoparticles discharge. However, understanding the fate of nanoparticles and their behavior in marine environments is still narrow due to limited efficiency of their characterization methods. Electroanalytical approaches (voltammetric, amperometric, chronoamperometric) paired with advanced techniques such as atomic force microscopy have been recognized as suitable choice for analyzing different biogeochemical courses in marine environments, exclusively those associated with sulfur species, organic materials, trace metal cycling, distribution and interaction between colloidal and dissolved phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Buffle J, Van Leeuwen H (1992) Environmental particles, vol 1. Lewis Publishers, Chelsea

    Google Scholar 

  2. Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3:159–171

    Article  CAS  Google Scholar 

  3. Linkov I, Steevens J, Adlakha-Hutcheon G et al (2009) Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO advanced research workshop. J Nanopart Res 11:513–527

    Article  CAS  Google Scholar 

  4. Tervonen T, Linkov I, Figueira JR et al (2009) Risk-based classification system of nanomaterials. J Nanopart Res 11:757–766

    Article  CAS  Google Scholar 

  5. Domingos RF, Baalousha MA, Ju-Nam Y et al (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43:7277–7284

    Article  CAS  Google Scholar 

  6. Malloy A, Hole P, Carr B (2007) Nanoparticle tracking analysis; the Halo system. In: Ash B (ed) Integrated nanosensors. Mater Res Soc Symp Proc: 952E, Warrendale, 0952-F02-04

    Google Scholar 

  7. Bura-Nakic E, Krznarić D, Jurašin D et al (2007) Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural waters. Anal Chim Acta 594(1): 44–51

    Article  CAS  Google Scholar 

  8. Bura-Nakic E, Krznarić D, Helz GR et al (2011) Characterization of iron sulfide species in model solutions by cyclic voltammetry. Revisiting an old problem. Electroanalysis 23: 1376–1382

    Article  CAS  Google Scholar 

  9. Ciglenecki I, Krznarić D, Helz GR (2005) Voltammetry of copper sulfide particles and nanoparticles: investigation of the cluster hypothesis. Environ Sci Technol 39(19):7492–7498

    Article  CAS  Google Scholar 

  10. Helz GR, Ciglenecki I, Krznarić D et al (2011) Voltammetry of sulfide nanoparticles and the FeS(aq) problem. In: Tratnyek PG, Grundl TJ, Haderlein SB (eds) Aquatic redox chemistry. American Chemical Society, Washington, DC, pp 265–282

    Chapter  Google Scholar 

  11. Krznarić D, Helz GR, Ciglenečki I (2006) Prospect of determining copper sulfide nanoparticles by voltammetry: a potential artifact in supersaturated solution. J Electroanal Chem 590:207–214

    Article  CAS  Google Scholar 

  12. Krznarić D, Helz GR, Bura-Nakic E et al (2008) Accumulation mechanism for metal chalcogenide nanoparticles at Hg electrodes: Cu sulfide example. Anal Chem 80(3):742–749

    Article  CAS  Google Scholar 

  13. Krznarić D, Ciglenečki I (2014) Voltammetric study of an FeS layer on a Hg electrode in supersaturated FeS chloride solution. Environ Chem 12(2):123–129

    Article  CAS  Google Scholar 

  14. Bura-Nakic E, Marguš M, Milanović I et al (2014) The development of electrochemical methods for determining nanoparticles in the environment. Part II. Chronoamperometric study of FeS in sodium chloride solutions. Environ Chem 11(2):187–195

    Article  CAS  Google Scholar 

  15. Bura-Nakic E, Marguš M, Jurašin D et al (2015) Chronoamperometric study of elemental sulfur (S) nanoparticles (NPs) in NaCl water solution: new methodology for S NPs sizing and detection. Geochem Trans 16:1. https://doi.org/10.1186/s12932-015-0016-2

    Article  CAS  Google Scholar 

  16. Ciglenečki I, Marguš M, Bura-Nakić E, Milanović I (2014) Electroanalytical methods in characterization of sulfur species in aqueous environment. J Electrochem Sci Eng 4:155–163

    Article  Google Scholar 

  17. Kovač S, Svetličić V, Žutić V (1999) Molecular adsorption vs. cell adhesion at an electrified aqueous interface. Colloids Surf A Physicochem Eng Asp 149:481–489

    Article  Google Scholar 

  18. Svetličić V, Ivošević N, Kovač S, Žutić V (2000) Charge displacement by adhesion and spreading of a cell: amperometric signals of living cells. Langmuir 16:8217–8220

    Article  CAS  Google Scholar 

  19. Svetlicić V, Ivosević N, Kovac S, Zutić V (2001) Charge displacement by adhesion and spreading of a cell. Bioelectrochemistry 53:79–86

    Article  Google Scholar 

  20. Svetličić V, Hozić A (2002) Probing cell surface charge by scanning electrode potential. Electrophoresis 23:2080–2086

    Article  Google Scholar 

  21. Xiao X, Fan FRF, Zhou J (2008) Current transients in single nanoparticle collision events. J Am Chem Soc 130:16669–16677

    Article  CAS  Google Scholar 

  22. Pinheiro JP, Domingos R, Lopez R et al (2007) Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry. Colloids Surf A Physicochem Eng Asp 295:200–208

    Article  CAS  Google Scholar 

  23. Vale G, Mehennaoui K, Cambier S (2016) Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquat Toxicol 170:162–174. https://doi.org/10.1016/j.aquatox.2015.11.019

    Article  CAS  Google Scholar 

  24. Zhang M, Yang J, Cai Z et al (2019) Detection of engineered nanoparticles in aquatic environments: current status and challenges in enrichment, separation, and analysis. Environ Sci Nano 6:709–735. https://doi.org/10.1039/C8EN01086B

    Article  CAS  Google Scholar 

  25. Filella M (2006) Colloidal properties of submicron particles in natural waters. In: Wilkinson KJ, Lead JR (eds) Environmental colloids and particles: behaviour, structure and characterization. Wiley, Chichester

    Google Scholar 

  26. Taillefert M, Lienemann CP, Gaillard JF, Perret D (2000) Speciation, reactivity, and cycling of Fe and Pb in a meromictic lake. Geochim Cosmochim Acta 64(2):169–183. https://doi.org/10.1016/S0016-7037(99)00285-9

    Article  CAS  Google Scholar 

  27. Hannah DM, Muirhead D, Lead JR (2003) Imaging of suspended macromolecules and colloids in glacial and alpine streams by atomic force microscopy. J Glaciol 49(167):607–609

    Article  Google Scholar 

  28. Lienemann C-P, Taillefert M, Perret D, Gaillard J-F (1997) Association of cobalt and manganese in aquatic systems: chemical and microscopic evidence. Geochim Cosmochim Acta 61:1437–1446. https://doi.org/10.1016/S0016-7037(97)00015-X

    Article  CAS  Google Scholar 

  29. Doucet FR, Lead JR, Santschi PH (2006) Colloid–trace element interactions in aquatic systems. In: Wilkinson KJ, Lead JR (eds) Environmental colloids and particles: behaviour, structure and characterization. Wiley, Chichester

    Google Scholar 

  30. Salaun P, Bujard F, Berndondini L et al (2004) Integrated microanalytical system coupling permeation liquid membrane and voltammetry for trace metal speciation. Technical description and optimization. Electroanalysis 16:811–820. https://doi.org/10.1002/ELAN.200402888

    Article  CAS  Google Scholar 

  31. Slaveykova VI, Parthansarathy N, Buffle J, Wilkinson KJ (2004) Permeation liquid membrane as a tool for monitoring bioavailable Pb in natural waters. Sci Total Environ 328:55–68. https://doi.org/10.1016/j.scitotenv.2003.10.007

    Article  CAS  Google Scholar 

  32. Gimpel J, Zhang H, Davison W, Edwards A (2003) In situ trace metal speciation in lake surface waters using DGT, dialysis, and filtration. Environ Sci Technol 37:138–146. https://doi.org/10.1021/ES0200995

    Article  CAS  Google Scholar 

  33. Motelica-Heino M, Naylor C, Zhang H, Davison W (2003) Simultaneous release of metals and sulfide in lacustrine sediment. Environ Sci Technol 37:4374–4381. https://doi.org/10.1021/ES030035+

    Article  CAS  Google Scholar 

  34. Lead JR, Davison W, Hamilton-Taylor J, Buffle J (1997) Characterizing colloidal material in natural waters. Aquat Geochem 3:213–232. https://doi.org/10.1023/A:1009695928585

    Article  CAS  Google Scholar 

  35. Zhang H, Davison W, Ottley C (1999) Remobilisation of major ions in freshly deposited lacustrine sediment at overturn. Aquat Sci 61:354–361. https://doi.org/10.1007/S000270050071

    Article  CAS  Google Scholar 

  36. Guo L, Santschi P (2006) Ultrafiltration and its applications to sampling and characterisation of aquatic colloids. In: Wilkinson KJ, Lead JR (eds) Environmental colloids and particles: behaviour, structure and characterization. Wiley, Chichester

    Google Scholar 

  37. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    Article  CAS  Google Scholar 

  38. Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1: 42–51

    Article  CAS  Google Scholar 

  39. Sanyasi S, Majhi RK, Kumar S et al (2016) Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multidrug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci Rep 6:24929

    Article  Google Scholar 

  40. Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover Publications, New York, pp 3–24

    Google Scholar 

  41. Dobrovolskaia MA, Patri AK, Zheng J et al (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed Nanotechnol Biol Med 5:106–117

    Article  CAS  Google Scholar 

  42. Ito T, Sun L, Bevan MA, Crooks RM (2004) Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir 20:6940–6945

    Article  CAS  Google Scholar 

  43. Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Characterization of nanoparticles for therapeutics. Nanomedicine 2:789–803

    Article  CAS  Google Scholar 

  44. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  45. Liu XM, Sheng GP, Luo HW et al (2010) Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environ Sci Technol 44:4355–4360

    Article  CAS  Google Scholar 

  46. Khorsand Zak A, Abd Majid WH, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci 13:251–256

    Article  CAS  Google Scholar 

  47. Sapsford KE, Tyner KM, Dair BJ et al (2011) Analyzing nanomaterials bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83: 4453–4488

    Article  CAS  Google Scholar 

  48. Lin PC, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32:711–726

    Article  Google Scholar 

  49. Stanjek H, Häusler W (2004) Basics of X-ray diffraction. Hyperfine Interact 154:107–119

    Article  CAS  Google Scholar 

  50. Bindu P, Thomas S (2014) Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8:123–134

    Article  Google Scholar 

  51. Tadic M, Panjan M, Damnjanovic V, Milosevic I (2014) Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Appl Surf Sci 320: 183–187

    Article  CAS  Google Scholar 

  52. Ahmad A, Senapati S, Khan MI et al (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycetes, Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  53. Al-Dhabi NA, Ghilan AM, Arasu MV et al (2018) Characterization of silver nanomaterials derived from marine Streptomyces sp. Al-Dhabi-87 and it’s in vitro application against multidrug resistant and extended-spectrum beta-lactamase clinical pathogens. Nanomaterials 8:279

    Article  CAS  Google Scholar 

  54. Qi P, Zhang D, Wan Y et al (2013) Sulfate-reducing bacteria detection based on the photocatalytic property of microbial synthesized ZnS nanoparticles. Anal Chim Acta 800:65–70

    Article  CAS  Google Scholar 

  55. Rajeshkumar S, Ponnanikajamideen M, Malarkodi C et al (2014) Microbe-mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria. J Nanostruct Chem 4:96

    Article  Google Scholar 

  56. Viswanathan M, Arumugam S, Thangavel B (2016) In vitro anticancer activity of silver nanoparticles synthesized by Escherichia coli VM1 isolated from marine sediments of encore southeast coast of India. Enzym Microb Technol 95:146–154

    Article  CAS  Google Scholar 

  57. Seshadri S, Prakash A, Kowshik M (2012) Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8. Bull Mater Sci 35:1201–1205

    Article  CAS  Google Scholar 

  58. Sharma N, Pinnaka AK, Raje M et al (2012) Exploitation of marine bacteria for production of gold nanoparticles. Microb Cell Factories 11:86

    Article  CAS  Google Scholar 

  59. Thomas R, Janardhanan A, Varghese RT et al (2014) Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Braz J Microbiol 45:1221–1227

    Article  CAS  Google Scholar 

  60. Salunke BK, Sawant SS, Lee S-I, Kim BS (2015) Comparative study of MnO2 nanoparticles synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99:5419–5427

    Article  CAS  Google Scholar 

  61. Rajeshkumar S, Malarkodi C, Paulkumar K et al (2013) Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. Nanosci Nanotechnol 3:21–25

    Google Scholar 

  62. Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 23:2694–2699

    Article  CAS  Google Scholar 

  63. Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and biometallic nanoparticles production using single-cell protein (Spirulina plantensis) Geitler. J Mater Sci 43:5115–5122

    Article  CAS  Google Scholar 

  64. Vala AK (2014) Exploitation on green synthesis of gold nanoparticles by a marine-derives fungus Aspergillus sydowii. Environ Prog Sustain Energy 34:194–197

    Article  CAS  Google Scholar 

  65. Li G, He D, Qian Y et al (2012) Fungus mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  Google Scholar 

  66. Mishra A, Tripathy SK, Wahab R et al (2011) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microb Biotechnol 92:617–630

    Article  CAS  Google Scholar 

  67. Du L, Xian L, Feng J-X (2011) Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13:921–930

    Article  CAS  Google Scholar 

  68. Mukherjee P, Ahmad A, Mandal D et al (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticles synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  69. Kumar D, Karthik L, Kumar G, Rao KB (2011) Biosynthesis of silver nanoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacologyonline 3:1100–1111

    Google Scholar 

  70. Zhang X, Qu Y, Shen W et al (2016) Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf A Physicochem Eng Asp 497:280–285

    Article  CAS  Google Scholar 

  71. Seshadri S, Saranya K, Kowshik M (2011) Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 27:1464–1469

    Article  CAS  Google Scholar 

  72. Pimprikar PS, Joshi SS, Kumar AR et al (2009) Influence of biomass and gold salt concentration on nanoparticles synthesis by the tropical marine yeast Yerrowia lipolytica NCIM 3589. Colloids Surf B Biointerfaces 74:309–316

    Article  CAS  Google Scholar 

  73. Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG (2011) Gold nanoparticles production in a microalga. J Nanopart Res 13:6439–6445

    Article  CAS  Google Scholar 

  74. Eroglu E, Chen X, Bradshaw M et al (2013) Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications. RSC Adv 3:1009–1012

    Article  CAS  Google Scholar 

  75. Aziz N, Faraz M, Pandey R et al (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  Google Scholar 

  76. Brayner R, Coradin T, Beaunier P et al (2012) Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae. Colloids Surf B Biointerfaces 93:20–23

    Article  CAS  Google Scholar 

  77. Li Y, Tang X, Song W et al (2014) Biosynthesis of silver nanoparticles using Euglena gracilis, Euglena intermedia and their extract. IET Nanobiotechnol 9:19–26

    Article  Google Scholar 

  78. Xia Y, Xiao Z, Dou X et al (2013) Green and facile fabrication of hollow porous MnO/C microspheres from microalgae for lithium-ion batteries. ACS Nano 7:7083–7092

    Article  CAS  Google Scholar 

  79. Jena J, Pradhan N, Nayak RR et al (2014) Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticles synthesis. J Microb Biotechnol 24:522–533

    Article  CAS  Google Scholar 

  80. Shakibaie M, Forootanfar H, Mollazadeh-Moghaddam K et al (2010) Green synthesis of gold nanoparticles by the marine microalga Teyraselmis suecica. Biotechnol Appl Biochem 57:71–75

    Article  CAS  Google Scholar 

  81. Patil MK, Kim G-D (2018) Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf B: Biointerfaces 172:487–495. https://doi.org/10.1016/j.colsurfb.2018.09.007

    Article  CAS  Google Scholar 

  82. Ciglenečki I, Ćosović B (1996) Elctrochemical study of Sulphur species in seawater and marine phytoplankton cultures. Mar Chem 52:87–97

    Article  Google Scholar 

  83. Bura-Nakić E, Helz GR, Ciglenecki I, Ćosović B (2009) Seasonal variations in reduced Sulphur species in a stratified Lake (Rogoznica Lake, Croatia); evidence for organic carriers of reactive Sulphur. Geochim Cosmochim Ac 73:3738–3751

    Article  CAS  Google Scholar 

  84. Toh HS, Batchelor-McAuley C, Tschulik K et al (2013) The anodic stripping voltammetry of nanoparticles: electrochemical evidence for the surface agglomeration of silver nanoparticles. Nanoscale 5:4884–4893. https://doi.org/10.1039/c3nr00898c

    Article  CAS  Google Scholar 

  85. da Silva BF, Pérez S, Gardinalli P (2011) Analytical chemistry of metallic nanoparticles in natural environments. Trends Anal Chem 30(3):528–540. https://doi.org/10.1016/j.trac.2011.01.008

    Article  CAS  Google Scholar 

  86. Han H, Pan D, Liu D et al (2015) Cathodic stripping voltammetric determination of chromium in coastal waters on cubic nano-titanium carbide loaded gold nanoparticles modified electrode. Front Mar Sci 2:75. https://doi.org/10.3389/fmars.2015.00075

    Article  Google Scholar 

  87. Wyantuti S, Hartati YW, Firdaus ML et al (2015) Fabrication of gold nanoparticles-modified glassy carbon electrode and its application for voltammetric detection of Cr(III). Int J Sci Technol Res 4(1):135–139

    Google Scholar 

  88. Luther GW, Reimers CE, Nuzzio DB, Lovalvo D (1999) In situ deployment of voltammetric, potentiometric, and amperometric microelectrodes from a ROV to determine dissolved O2, Mn, Fe, S(−2), and pH in porewaters. Environ Sci Technol 33(23):4352–4356. https://doi.org/10.1021/es9904991

    Article  CAS  Google Scholar 

  89. Bura-Nakić E, Marguš M, Milanović I et al (2013) The development of electrochemical methods for determining nanoparticles in the environment. Part II. Chronoamperometric study of FeS in sodium chloride solutions. Environ Chem 11(2):187–195. https://doi.org/10.1071/EN13090

    Article  CAS  Google Scholar 

  90. Alessandrini A, Facci P (2005) AFM: a versatile tool in biophysics. Meas Sci Technol 16:R65–R92

    Article  CAS  Google Scholar 

  91. Santos NC, Castanho MA (2004) An overview of the biophysical applications of atomic force microscopy. Biophys Chem 107:133–149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Adetunji, C.O. et al. (2020). Nanomaterials from Marine Environments: An Overview. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics