Skip to main content

Modeling of the Primary Plant Cell Wall in the Context of Plant Development

  • Living reference work entry
  • First Online:
Cell Biology
  • 625 Accesses

Abstract

The plant cell wall is a complex material made of polysaccharides, proteins, ions and water. As an external envelope around the cell it resists the internal turgor pressure. During plant cell growth, the cell wall material must yield to allow the cell to expand in a controlled spatial and temporal pattern. Modeling this behavior has been approached via a variety of techniques ranging from continuum mechanics to atomistic models, whilst at an intermediate scale, mesoscopic models attempt to consider the mechanical behavior of individual polymers and linkages while simplifying molecular structures to relevant properties. In this review an overview is provided over recent modeling approaches focusing on the primary plant cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Band LR, Fozard JA, Godin C, Jensen OE, Pridmore T, Bennett MJ, King JR. Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales. Plant Cell. 2012a;24:3892–906.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Band LR, Úbeda-Tomás S, Dyson RJ, Middleton AM, Hodgman TC, Owen MR, Jensen OE, Bennett MJ, King JR. Growth-induced hormone dilution can explain the dynamics of plant root cell elongation. Proc Natl Acad Sci. 2012b;109:7577–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beckham G, Matthews J, Bomble Y, Bu L, Adney W, Himmel M, Nimlos M, Crowley M. Identification of amino acids responsible for processivity in a family 1 carbohydrate-binding module from a fungal cellulase. J Phys Chem. 2010;114:1447–53.

    Article  CAS  Google Scholar 

  • Bolduc JF, Lewis L, Aubin CE, Geitmann A. Finite-element analysis of geometrical factors in micro-indentation of pollen tubes. Biomech Model Mechanobiol. 2006;5:227–36.

    Article  PubMed  Google Scholar 

  • Boyer JS. Cell wall biosynthesis and the molecular mechanism of plant enlargement. Funct Plant Biol. 2009;36:383–94.

    Article  CAS  Google Scholar 

  • Bruce DM. Mathematical modeling of the cellular mechanics of plants. Philos Trans R Soc Lond B Biol Sci. 2003;358:1437–44.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bu L, Beckham GT, Crowley MF, Chang CH, Matthews JF, Bomble YJ, Adney WS, Himmel ME, Nimlos MR. The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds. J Phys Chem B. 2009;113:10994–1002.

    Article  CAS  PubMed  Google Scholar 

  • Burgert I, Fratzl P. Mechanics of the expanding cell wall. In: Verbelen JP, Vissenberg K, editors. The expanding cell. Berlin/Heidelberg: Springer; 2007. p. 191–215.

    Chapter  Google Scholar 

  • Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res. 2009;344:1879–900.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6:850–61.

    Article  CAS  PubMed  Google Scholar 

  • Dumais J, Shaw SL, Steele CR, Long SR, Ray PM. An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Int J Develop Biol. 2006;50:209–22.

    Article  Google Scholar 

  • Dyson RJ, Jensen OE. A fibre-reinforced fluid model for anisotropic plant cell growth. J Fluid Mech. 2010;655:472–503.

    Article  Google Scholar 

  • Dyson R, Band L, Jensen O. A model of crosslink kinetics in the expanding plant cell wall: yield stress and enzyme action. J Theor Biol. 2012;307:125–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fayant P, Girlanda O, Chebli Y, Aubin CE, Villemure I, Geitmann A. Finite element model of polar growth in pollen tubes. Plant Cell. 2010;22:2579–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fozard J, Lucas M, King J, Jensen O. Vertex-element models for anisotropic growth of elongated plant organs. Front Plant Sci. 2013;4:233.

    Article  PubMed Central  PubMed  Google Scholar 

  • Geitmann A. Experimental approaches used to quantify physical parameters at cellular and subcellular levels. Am J Bot. 2006;93:1220–30.

    Article  Google Scholar 

  • Geitmann A, Ortega JKE. Mechanics and modeling of plant cell growth. Trends Plant Sci. 2009;14:467–78.

    Article  CAS  PubMed  Google Scholar 

  • Goriely A, Robertson-Tessi M, Tabor M, Vandiver R. Elastic growth models. In: Mondaini R, Pardalos P, editors. Mathematical modelling of biosystems, vol. 102. Berlin/Heidelberg: Springer; 2008. p. 1–44.

    Chapter  Google Scholar 

  • Hamant O, Heisler M, Jönsson H, Krupinski P, Uyttewaaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz E, Couder Y, Traas J. Developmental patterning by mechanical signals in Arabidopsis. Science. 2008;322:1650–5.

    Article  CAS  PubMed  Google Scholar 

  • Hayot C, Forouzesh E, Goel A, Avramova Z, Turner J. Viscoelastic behavior of the walls of living plant cells by dynamic nanoindentation. J Exp Bot. 2012;63:2525–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hynninen A-P, Matthews JF, Beckham GT, Crowley MF, Nimlos MR. Coarse-grain model for glucose, cellobiose, and cellotetraose in water. J Chem Theory Comput. 2011;7:2137–50.

    Article  CAS  Google Scholar 

  • Kha H, Tuble SC, Kalyanasundaram S, Williamson RE. WallGen, software to construct layered cellulose-hemicellulose networks and predict their small deformation mechanics. Plant Physiol. 2010;152:774–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kroeger J, Geitmann A. Modeling pollen tube growth: feeling the pressure to deliver testifiable predictions. Plant Signal Behav. 2011;6:1828–30.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kroeger J, Geitmann A. Pollen tube growth: getting a grip on cell biology through modeling. Mech Res Commun. 2012a;42:32–9.

    Article  Google Scholar 

  • Kroeger J, Geitmann A. The pollen tube paradigm revisited. Curr Opin Plant Biol. 2012b;15:618–24.

    Article  PubMed  Google Scholar 

  • Lockhart JA. An analysis of irreversible plant cell elongation. J Theor Biol. 1965a;8:264–75.

    Article  CAS  PubMed  Google Scholar 

  • Lockhart JA. Cell extension. In: Bonner J, Varner JE, editors. Plant biochemistry. New York: Academic; 1965b. p. 826–49.

    Chapter  Google Scholar 

  • Matthews J, Beckham G, Bergenstråhle-Wohlert M, Brady J, Himmel M, Crowley M. Comparison of cellulose Iβ simulations with three carbohydrate force fields. J Chem Theory Comput. 2012;8:735–48.

    Article  CAS  Google Scholar 

  • Merks R, Guravage M, Inzé D, Beemster G. VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development. Plant Physiol. 2011;155:656–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mirabet V, Das P, Boudaoud A, Hamant O. The role of mechanical forces in plant morphogenesis. Annu Rev Plant Biol. 2011;62:365–85.

    Article  CAS  PubMed  Google Scholar 

  • Ortega JKE. Augmented equation for cell wall expansion. Plant Physiol. 1985;79:318–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ortega JKE. A quantitative biophysical perspective of expansive growth for cells with walls. In: Pandalai SG, editor. Recent research developments in biophysics, Research Signpost, Kerala, India vol. 3. 2004. p. 297–324.

    Google Scholar 

  • Palin R, Geitmann A. The role of pectin in plant morphogenesis. Biosystems. 2012;109:397–402.

    Article  CAS  PubMed  Google Scholar 

  • Passioura JB, Fry SC. Turgor and cell expansion: beyond the Lockhart equation. Aust J Plant Physiol. 1992;19:565–76.

    Article  Google Scholar 

  • Proseus T, Boyer J. Tension required for pectate chemistry to control growth in Chara corallina. J Exp Bot. 2007;58:4283–92.

    Article  CAS  PubMed  Google Scholar 

  • Rey A, Pasini D, Murugesan Y. Multiscale modeling of plant cell wall architecture and tissue mechanics for biomimetic applications. In: Bar-Cohen Y, editor. Biomimetics: nature-based innovation. Boca Raton: CRC Press; 2011. p. 131–68.

    Google Scholar 

  • Sanati Nezhad A, Naghavi M, Packirisamy M, Bhat R, Geitmann A. Quantification of the Young’s modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC). Lab Chip. 2013;13:2599–608.

    Article  Google Scholar 

  • Scheller H, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263–89.

    Article  CAS  PubMed  Google Scholar 

  • Schopfer P. Biomechanics of plant growth. Am J Bot. 2006;93:1415–25.

    Article  PubMed  Google Scholar 

  • Veytsmann B, Cosgrove DJ. A model of cell wall expansion based on thermodynamics of polymer networks. Biophys J. 1998;75:2240–50.

    Article  Google Scholar 

  • Wang R, Jiao Q-Y, Wei D-Q. Mechanical response of single plant cells to cell poking: a numerical simulation model. J Integr Plant Biol. 2006;48:700–5.

    Article  Google Scholar 

  • Wei C, Lintilhac P. Loss of stability – a new model for stress relaxation in plant cell walls. J Theor Biol. 2003;224:305–12.

    Article  CAS  PubMed  Google Scholar 

  • Winship LJ, Obermeyer G, Geitmann A, Hepler PK. Under pressure, cell walls set the pace. Trends Plant Sci. 2010;15:363–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winship LJ, Obermeyer G, Geitmann A, Hepler PK. Pollen tubes and the physical world. Trends Plant Sci. 2011;16:353–5.

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Puri V. Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model. Plant Physiol. 2012;160:1281–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Further Reading

  • Ivakov A, Persson S. Plant cell walls. Chichester: John Wiley Sons, Ltd., 2012.

    Google Scholar 

  • Verbelen JP, Vissenberg K. The expanding cell. Berlin/Heidelberg: Springer; 2007.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Geitmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Geitmann, A., Dyson, R. (2014). Modeling of the Primary Plant Cell Wall in the Context of Plant Development. In: Assmann, S., Liu, B. (eds) Cell Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7881-2_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7881-2_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7881-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics