Skip to main content

Anesthesia, Neural Population Models of

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

General anesthesia is a reversible, drug-induced state of unconsciousness characterized by lack of awareness of surroundings, lack of responsiveness to painful stimuli (nociception), and inability to form memories (amnesia). The change in brain state from wakeful to unconscious produces alterations in cortical electrical activity that can be monitored with electrodes placed on the scalp (electroencephalogram (EEG)) or on the surface of the cortex (electrocorticogram (ECoG)). The goal of neural modelers is to develop equations that describe the gross behavior of spatially averaged populations of neurons during both induction of and recovery from general anesthesia.

Detailed Description

Classes of General Anesthesia

There are two broad classes of anesthetic drugs: inductive agents (such as propofol, etomidate, isoflurane) that produce a slowed sleeplike EEG and dissociative agents (e.g., ketamine, nitrous oxide) that induce a dissociated state with an activated EEG similar to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Antkowiak B (2002) In vitro networks: cortical mechanisms of anaesthetic action. Br J Anaesth 89(1):102–111

    Article  CAS  PubMed  Google Scholar 

  • Banks MI, Pearce RA (1999) Dual actions of volatile anesthetics on GABA(A) IPSCs: dissociation of blocking and prolonging effects. Anesthesiology 90(1):120–134

    Article  CAS  PubMed  Google Scholar 

  • Bojak I, Liley DT (2005) Modeling the effects of anesthesia on the electroencephalogram. Phys Rev E 71(4 Pt 1):041902, URL: http://www.ncbi.nlm.nih.gov/pubmed/15903696

    Article  CAS  Google Scholar 

  • Bojak I, Day HC, Liley DT (2013) Ketamine, propofol, and the EEG: a neural field analysis of HCN1-mediated interactions. Front Comput Neurosci 7:22. doi:10.3389/fncom.2013.00022, URL: http://www.ncbi.nlm.nih.gov/pubmed/23576979

    Article  PubMed Central  PubMed  Google Scholar 

  • Boly M, Moran R, Murphy M, Boveroux P, Bruno MA, Noirhomme Q, Ledoux D, Bonhomme V, Brichant JF, Tononi G, Laureys S, Friston K (2012) Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J Neurosci 32(20):7082–7090. doi10.1523/JNEUROSCI.3769-11.2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen X, Shu S, Bayliss DA (2009) HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J Neurosci 29(3):600–609. doi:10.1523/JNEUROSCI.3481-08.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coppens M, Van Limmen JGM, Schnider T, Wyler B, Bonte S, Dewaele F, Struys MMRF, Vereecke HEM (2010) Study of the time course of the clinical effect of propofol compared with the time course of the predicted effect-site concentration: performance of three pharmacokinetic-dynamic models. Br J Anaesth 104(4):452–458. doi:10.1093/bja/aeq028

    Article  CAS  PubMed  Google Scholar 

  • Dadok VM, Kirsch HE, Sleigh JW, Lopour BA, Szeri AJ (2013) A probabilistic framework for a physiological representation of dynamically evolving sleep state. J Comput Neurosci. doi:10.1007/s10827-013-0489-x

    PubMed  Google Scholar 

  • Foster BL, Bojak I, Liley DTJ (2008) Population based models of cortical drug response: insights from anaesthesia. Cogn Neurodyn 2(4):283–296. doi:10.1007/s11571-008-9063-z

    Article  PubMed Central  PubMed  Google Scholar 

  • Friedman EB, Sun Y, Moore JT, Hung HT, Meng QC, Perera P, Joiner WJ, Thomas SA, Eckenho RG, Sehgal A, Kelz MB (2010) A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS One 5(7):e11903. doi:10.1371/journal.pone.0011903

    Article  PubMed Central  PubMed  Google Scholar 

  • Gaese BH, Ostwald J (2001) Anesthesia changes frequency tuning of neurons in the rat primary auditory cortex. J Neurophysiol 86(2):1062–1066

    CAS  PubMed  Google Scholar 

  • Gruss M, Bushell TJ, Bright DP, Lieb WR, Mathie A, Franks NP (2004) Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 65(2):443–452. doi:10.1124/mol.65.2.443

    Article  CAS  PubMed  Google Scholar 

  • Hindriks R, van Putten MJAM (2012) Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms. Neuroimage 60(4):2323–2334. doi:10.1016/j.neuroimage.2012.02.042

    Article  CAS  PubMed  Google Scholar 

  • Hutt A (2013) The anesthetic propofol shifts the frequency of maximum spectral power in EEG during general anesthesia: analytical insights from a linear model. Front Comput Neurosci 7:2. doi:10.3389/fncom.2013.00002, URL: http://www.ncbi.nlm.nih.gov/pubmed/23386826

    Article  PubMed Central  PubMed  Google Scholar 

  • Hutt A, Longtin A (2010) Effects of the anesthetic agent propofol on neural populations. Cogn Neurodyn 4(1):37–59. doi:10.1007/s11571-009-9092-2

    Article  PubMed Central  PubMed  Google Scholar 

  • Hutt A, Schimansky-Geier L (2008) Anesthetic-induced transitions by propofol modeled by nonlocal neural populations involving two neuron types. J Biol Phys 34(3–4):433–440. doi:10.1007/s10867-008-9065-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Kitamura A, Marszalec W, Yeh JZ, Narahashi T (2003) Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons. J Pharmacol Exp Ther 304(1):162–171. doi:10.1124/jpet.102.043273

    Article  CAS  PubMed  Google Scholar 

  • Koskinen M, Mustola S, Seppänen T (2005) Relation of EEG spectrum progression to loss of responsiveness during induction of anesthesia with propofol. Clin Neurophysiol 116(9):2069–2076. doi:10.1016/j.clinph.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  • Kuhlmann L, Foster BL, Liley DT (2013) Modulation of functional EEG networks by the NMDA antagonist nitrous oxide. PLoS One 8(2):e56434. doi:10.1371/journal.pone.0056434, URL: http://www.ncbi.nlm.nih.gov/pubmed/23457568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuizenga K, Wierda JM, Kalkman CJ (2001) Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br J Anaesth 86(3):354–360

    Article  CAS  PubMed  Google Scholar 

  • Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GA (2013) Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology 118(6):1264–1275. doi:10.1097/ALN. 0b013e31829103f5

    Article  CAS  PubMed  Google Scholar 

  • Liley DTJ, Bojak I (2005) Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. Clin Neurophysiol 22(5):300–313

    CAS  Google Scholar 

  • Liley DT, Walsh M (2013) The mesoscopic modeling of burst suppression during anesthesia. Front Comput Neurosci 7:46. doi:10.3389/fncom.2013.00046, URL: http://www.ncbi.nlm.nih.gov/pubmed/23641211

    Article  PubMed Central  PubMed  Google Scholar 

  • Liley DTJ, Cadusch PJ, Wright JJ (1999) A continuum theory of electro-cortical activity. Neurocomputing 26–27:795–800

    Article  Google Scholar 

  • Liley DT, Sinclair NC, Lipping T, Heyse B, Vereecke HE, Struys MM (2010) Propofol and remifentanil differentially modulate frontal electroencephalographic activity. Anesthesiology 113(2):292–304. doi:10.1097/ALN.0b013e3181e3d8a6

    Article  CAS  PubMed  Google Scholar 

  • Ludbrook GL, Upton RN, Grant C, Martinez A (1999) Prolonged dysequilibrium between blood and brain concentrations of propofol during infusions in sheep. Acta Anaesthesiol Scand 43(2):206–211

    Article  CAS  PubMed  Google Scholar 

  • Molaee-Ardekani B, Senhadji L, Shamsollahi MB, Vosoughi-Vahdat B, Wodey E (2007) Brain activity modeling in general anesthesia: enhancing local mean-field models using a slow adaptive firing rate. Phys Rev E 76(4 Pt 1):041911, URL: http://www.ncbi.nlm.nih.gov/pubmed/17995030

    Article  CAS  Google Scholar 

  • Moran RJ, Jung F, Kumagai T, Endepols H, Graf R, Dolan RJ, Friston KJ, Stephan KE, Tittge-meyer M (2011) Dynamic causal models and physiological inference: a validation study using isoflurane anaesthesia in rodents. PLoS One 6(8):e22790. doi:10.1371/journal.pone.0022790, URL: http://www.ncbi.nlm.nih.gov/pubmed/21829652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrenko AB, Yamakura T, Sakimura K, Baba H (2013) Defining the role of NMDA receptors in anesthesia: are we there yet? Eur J Pharmacol 723C:29–37. doi:10.1016/j.ejphar.2013.11.039

    Google Scholar 

  • Roberts F (2007) Pharmacokinetics and anaesthesia. Contin Educ Anaesth Crit Care Pain 7(1):25–29. doi:10.1093/bjaceaccp/mkl058

    Article  Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Liley DTJ (1999) Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Phys Rev E 60(6 Pt B):7299–7311, URL: http://www.ncbi.nlm.nih.gov/pubmed/11970675

    Article  CAS  Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Sleigh JW (2004) Modelling general anaesthesia as a first-order phase transition in the cortex. Prog Biophys Mol Biol 85(2–3):369–385. doi:10.1016/j.pbiomolbio. 2004.02.001

    Article  CAS  PubMed  Google Scholar 

  • Steyn-Ross DA, Steyn-Ross ML, Sleigh JW, Wilson MT (2011) Progress in modeling EEG effects of general anesthesia: biphasic response and hysteresis. In: Hutt A (ed) Sleep and anesthesia: neural correlates in theory and experiment, chapter 8, vol 15, Springer series in computational neuroscience. Springer, New York, pp 167–194. doi:10.1007/978-1-4614-0173-5n 8

    Chapter  Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Sleigh JW (2013) Interacting Turing-Hopf instabilities drive symmetry-breaking transitions in a mean-field model of the cortex: a mechanism for the slow oscillation. Phys Rev X 3(2):021005. doi:10.1103/PhysRevX.3.021005, URL: http://link.aps.org/doi/10.1103/PhysRevX.3.021005

    CAS  Google Scholar 

  • Voss LJ, Ludbrook G, Grant C, Upton R, Sleigh JW (2007) A comparison of pharmacokinetic/pharmacodynamic versus mass-balance measurement of brain concentrations of intra-venous anesthetics in sheep. Anesth Analg 104(6):1440–1446. doi:10.1213/01.ane.0000263274. 62303.1a

    Article  CAS  PubMed  Google Scholar 

  • Weir CJ (2006) The molecular mechanisms of general anaesthesia: dissecting the GABAA receptor. Contin Educ Anaesth Crit Care Pain 6(2):49–53. doi:10.1093/bjaceaccp/mki068

    Article  Google Scholar 

  • Wentlandt K, Samoilova M, Carlen PL, El Beheiry H (2006) General anesthetics inhibit gap junction communication in cultured organotypic hippocampal slices. Anesth Analg 102(6):1692–1698. doi:10.1213/01.ane.0000202472.41103.78

    Article  PubMed  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12:1–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson MT, Sleigh JW, Steyn-Ross DA, Steyn-Ross ML (2006) General anesthetic-induced seizures can be explained by a mean-field model of cortical dynamics. Anesthesiology 104:588–593

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Alistair Steyn-Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Steyn-Ross, D.A., Steyn-Ross, M., Sleigh, J. (2014). Anesthesia, Neural Population Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics