Skip to main content

Neuromodulation in Small Networks

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

Neuromodulators are signaling molecules that induce long-lasting or network-wide changes in electrical activity, canonically through metabotropic G-coupled protein receptors. In contrast to classical neurotransmission, which directly opens ion channels, neuromodulators can act either synaptically or extra-synaptically (e.g., hormonal pathways) to modify neuronal activity. Because neuromodulators can simultaneously target many neurons, our understanding of their function on networks has progressed furthest in small systems with known connectivity. In particular, much research has been conducted within invertebrate central pattern generator (CPG) networks. These networks exhibit spontaneous electrical discharges that drive rhythmic muscle contractions to produce simple behaviors such as chewing, breathing, and locomotion.

Detailed Description

Neuromodulation, while often receiving less attention than direct synaptic communication between neurons, is a vital and ubiquitous...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alon U (2006) An introduction to systems biology: design principles of biological circuits. Chapman & Hall, London

    Google Scholar 

  • Ballo AW, Nadim F, Bucher D (2012) Dopamine modulation of IH improves temporal fidelity of spike propagation in an unmyelinated axon. J Neurosci 32:5106–5119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bargmann CI (2012) Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34:458–465

    Article  PubMed  CAS  Google Scholar 

  • Boonen K, Creemers JW, Schoofs L (2009) Bioactive peptides, networks and systems biology. Bioessays 31:300–314

    Article  PubMed  CAS  Google Scholar 

  • Brezina V (2010) Beyond the wiring diagram: signalling through complex neuromodulator networks. Philos Trans R Soc Lond B Biol Sci 365:2363–2374

    Article  PubMed  PubMed Central  Google Scholar 

  • Brezina V, Weiss KR (1997) Analyzing the functional consequences of transmitter complexity. Trends Neurosci 20:538–543

    Article  PubMed  CAS  Google Scholar 

  • Brezina V, Orekhova IV, Weiss KR (1996) Functional uncoupling of linked neurotransmitter effects by combinatorial convergence. Science 273:806–810

    Article  PubMed  CAS  Google Scholar 

  • Brezina V, Orekhova IV, Weiss KR (2000) Optimization of rhythmic behaviors by modulation of the neuromuscular transform. J Neurophysiol 83:260–279

    PubMed  CAS  Google Scholar 

  • Brezina V, Orekhova IV, Weiss KR (2003) Neuromuscular modulation in Aplysia. II. Modulation of the neuromuscular transform in behavior. J Neurophysiol 90:2613–2628

    Article  PubMed  Google Scholar 

  • Brezina V, Horn CC, Weiss KR (2005) Modeling neuromuscular modulation in Aplysia. III. interaction of central motor commands and peripheral modulatory state for optimal behavior. J Neurophysiol 93:1523–1556

    Article  PubMed  Google Scholar 

  • Calin-Jageman RJ, Tunstall MJ, Mensh BD et al (2007) Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. J Neurophysiol 98:2382–2398

    Article  PubMed  Google Scholar 

  • Chao MY, Komatsu H, Fukuto HS et al (2004) Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc Natl Acad Sci USA 101:15512–15517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Christie AE, Stemmler EA, Dickinson PS (2010) Crustacean neuropeptides. Cell Mol Life Sci 67:4135–4169

    Article  PubMed  CAS  Google Scholar 

  • Clynen E, Reumer A, Baggerman G et al (2010) Neuropeptide biology in Drosophila. Adv Exp Med Biol 692:192–210

    Article  PubMed  CAS  Google Scholar 

  • Cooke IM (2002) Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion. Biol Bull 202:108–136

    Article  PubMed  Google Scholar 

  • Cropper EC, Evans CG, Hurwitz I et al (2004) Feeding neural networks in the mollusk Aplysia. Neurosignals 13:70–86

    Article  PubMed  CAS  Google Scholar 

  • Dickinson PS, Fairfield WP, Hetling JR, Hauptman J (1997) Neurotransmitter interactions in the stomatogastric system of the spiny lobster: one peptide alters the response of a central pattern generator to a second peptide. J Neurophysiol 77:599–610

    PubMed  CAS  Google Scholar 

  • Djokaj S, Cooper RL, Rathmayer W (2001) Presynaptic effects of octopamine, serotonin, and cocktails of the two modulators on neuromuscular transmission in crustaceans. J Comp Physiol A 187:145–154

    Article  PubMed  CAS  Google Scholar 

  • Doi A, Ramirez J-M (2010) State-dependent interactions between excitatory neuromodulators in the neuronal control of breathing. J Neurosci 16:8251–8262

    Article  Google Scholar 

  • Fu Q, Tang LS, Marder EE, Li L (2007) Mass spectrometric characterization and physiological actions of VPNDWAHFRGSWamide, a novel B type allatostatin in the crab, Cancer borealis. J Neurochem 101:1099–1107

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa Y, Furukawa Y, Ohta S et al (1999) The Aplysia mytilus inhibitory peptide-related peptides: identification, cloning, processing, distribution, and action. J Neurosci 19:9618–9634

    PubMed  CAS  Google Scholar 

  • Furukawa Y, Nakamaru K, Wakayama H et al (2001) The enterins: a novel family of neuropeptides isolated from the enteric nervous system and CNS of Aplysia. J Neurosci 21:8247–8261

    PubMed  CAS  Google Scholar 

  • Goldman MS, Golowasch J, Marder E, Abbott LF (2001) Global structure, robustness, and modulation of neuronal models. J Neurosci 21:5229–5238

    PubMed  CAS  Google Scholar 

  • Grashow R, Brookings T, Marder E (2009) Reliable neuromodulation from circuits with variable underlying structure. Proc Natl Acad Sci USA 106:11742–11746

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guirguis MS, Wilkens JL (1995) The role of the cardioregulatory nerves in mediating heart rate responses to locomotion, reduced stroke volume, and neurohormones in Homarus americanus. Biol Bull 188:179–185

    Article  Google Scholar 

  • Gutierrez GJ, O’Leary T, Marder E (2013) Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron 77:845–858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harris-Warrick RM, Johnson BR (2010) Checks and balances in neuromodulation. Front Behav Neurosci 4:47

    PubMed  PubMed Central  Google Scholar 

  • Harris-Warrick RM, Johnson BR, Peck JH et al (1998) Distributed effects of dopamine modulation in the crustacean pyloric network. Ann N Y Acad Sci 860:155–167

    Article  PubMed  CAS  Google Scholar 

  • Horvitz HR, Chalfie M, Trent C et al (1982) Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216:1012–1014

    Article  PubMed  CAS  Google Scholar 

  • Husson SJ, Mertens I, Janssen T, Lindemans M (2007) Neuropeptidergic signaling in the nematode Caenorhabditis elegans. Prog Neurobiol 82:33–55

    Article  PubMed  CAS  Google Scholar 

  • Jing J, Weiss KR (2001) Neural mechanisms of motor program switching in Aplysia. J Neurosci 21:7349–7362

    PubMed  CAS  Google Scholar 

  • Kaczmarek LK, Levitan IB (1987) Neuromodulation: the biochemical control of neuronal excitability. Oxford University Press, New York

    Google Scholar 

  • Kupfermann I, Weiss KR (2001) Motor program selection in simple model systems. Curr Opin Neurobiol 11:673–677

    Google Scholar 

  • Li C, Kim K (2008) Neuropeptides WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.142.1, http://www.wormbook.org

  • Ma M, Szabo TM, Jia C et al (2009) Mass spectrometric characterization and physiological actions of novel crustacean C-type allatostatins. Peptides 30:1660–1668

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marder E (2012) Neuromodulation of neuronal circuits: back to the future. Neuron 76:1–11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Goaillard J-M (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Taylor AL (2011) Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 14:133–138

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mesce KA (2002) Metamodulation of the biogenic amines: second-order modulation by steroid hormones and amine cocktails. Brain Behav Evol 60:339–349

    Article  PubMed  Google Scholar 

  • Mesce KA, Crisp KM, Gilchrist LS (2001) Mixtures of octopamine and serotonin have nonadditive effects on the CNS of the medicinal Leech. J Neurophysiol 85:2039–2046

    PubMed  CAS  Google Scholar 

  • Morgan PT, Jing J, Vilim FS, Weiss KR (2002) Interneuronal and peptidergic control of motor pattern switching in Aplysia. J Neurophysiol 87:49–61

    PubMed  CAS  Google Scholar 

  • Nagy F, Dickinson PS (1983) Control of a central pattern generator by an identified modulatory interneuron in crustacea. I. Modulation of the pyloric motor output. J Exp Biol 105:33–58

    PubMed  CAS  Google Scholar 

  • Nusbaum MP, Blitz DM (2012) Neuropeptide modulation of microcircuits. Curr Opin Neurobiol 22:592–601

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nusbaum MP, Marder E (1989) A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity. J Neurosci 9:1600–1607

    PubMed  CAS  Google Scholar 

  • Nusbaum MP, Blitz DM, Swensen AM et al (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154

    Article  PubMed  CAS  Google Scholar 

  • O’Leary T, Wyllie DJA (2011) Neuronal homeostasis: time for a change? J Physiol (Lond) 589:4811–4826

    Google Scholar 

  • Prier KR, Beckman OH, Tublitz NJ (1994) Modulating a modulator: biogenic amines at subthreshold levels potentiate peptide-mediated cardioexcitation of the heart of the tobacco hawkmoth Manduca sexta. J Exp Biol 197:377–391

    PubMed  CAS  Google Scholar 

  • Roffman RC, Norris BJ, Calabrese RL (2012) Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator. J Neurophysiol 107:1681–1693

    Article  PubMed  PubMed Central  Google Scholar 

  • Skiebe P, Schneider H (1994) Allatostatin peptides in the crab stomatogastric nervous system: inhibition of the pyloric motor pattern and distribution of allatostatin-like immunoreactivity. J Exp Biol 194:195–208

    PubMed  CAS  Google Scholar 

  • Spitzer N, Cymbalyuk G, Zhang H et al (2008) Serotonin transduction cascades mediate variable changes in pyloric network cycle frequency in response to the same modulatory challenge. J Neurophysiol 99:2844–2863

    Article  PubMed  CAS  Google Scholar 

  • Stevens JS, Cashman CR, Smith CM, Beale KM, Towle DW, Christie AE, Dickinson PS (2009) The peptide hormone pQDLDHVFLRFamide (crustacean myosuppressin) modulates the Homarus americanus cardiac neuromuscular system at multiple sites. J Exp Biol 212:3961–3976

    Google Scholar 

  • Sweedler JV, Li L, Rubakhin SS et al (2002) Identification and characterization of the feeding circuit-activating peptides, a novel neuropeptide family of aplysia. J Neurosci 22:7797–7808

    PubMed  CAS  Google Scholar 

  • Swensen AM, Marder EE (2000) Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. J Neurosci 20:6752–6759

    PubMed  CAS  Google Scholar 

  • Swensen AM, Marder EE (2001) Modulators with convergent cellular actions elicit distinct circuit outputs. J Neurosci 21:4050–4058

    PubMed  CAS  Google Scholar 

  • Tobin A-E, Calabrese RL (2005) Myomodulin increases IH and inhibits the Na/K pump to modulate bursting in leech heart interneurons. J Neurophysiol 94:3938–3950

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1999) Measures of degeneracy and redundancy in biological networks. Proc Natl Acad Sci USA 96:3257–3262

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vilim FS, Sasaki K, Rybak J et al (2010) Distinct mechanisms produce functionally complementary actions of neuropeptides that are structurally related but derived from different precursors. J Neurosci 30:131–147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Whitacre JM (2010) Degeneracy: a link between evolvability, robustness and complexity in biological systems. Theor Biol Med Model 7:6

    Article  PubMed  PubMed Central  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340

    Article  PubMed  CAS  Google Scholar 

  • Williams AH, Calkins A, O’Leary T, Symonds R, Marder E, Dickinson PS (2013a) The neuromuscular transform of the lobster cardiac system explains the opposing effects of a neuromodulator on muscle output. J Neurosci 33(42):16565–16575

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Williams AH, O’Leary T, Marder E (2013b) Homeostatic regulation of neuronal excitability. Scholarpedia 8:1656

    Article  Google Scholar 

  • Wiwatpanit T, Powers B, Dickinson PS (2012) Inter-animal variability in the effects of C-type allatostatin on the cardiac neuromuscular system in the lobster Homarus americanus. J Exp Biol 215:2308–2318

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao S, Sheibanie AF, Oh M et al (2011) Peptide neuromodulation of synaptic dynamics in an oscillatory network. J Neurosci 31:13991–14004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex H. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Williams, A.H., Hamood, A.W., Marder, E. (2013). Neuromodulation in Small Networks. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_26-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_26-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics