Skip to main content

Spindle Oscillations: Models

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 266 Accesses

Definition

Sleep spindles appear during the early phases of sleep in all mammals. These 7–14 Hz oscillations are generated by the thalamus, but their triggering and large-scale synchrony depends on the cerebral cortex and thalamocortical interactions. Computational models have been designed to study how these oscillations are generated, what type of intrinsic currents and synaptic receptors is implicated, and how their synchrony is organized in the thalamocortical system.

Detailed Description

Introduction

The mammalian brain generates various types of slow oscillations during slow-wave sleep, such as spindle waves, delta oscillations, and slower oscillations (Steriade 2003). Spindle oscillations, which are mostly visible in the early stages of sleep (stage II in humans), are the best studied sleep oscillation because it is present in all mammals during sleep or anesthesia. Spindles are generated by thalamic circuits under physiological conditions, in contrast to delta and slow...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adrian ED (1941) Afferent discharges to the cerebral cortex from peripheral sense organs. J Physiol 100:159–191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen P, Eccles JC (1962) Inhibitory phasing of neuronal discharge. Nature 196:645–647

    Article  CAS  PubMed  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1999) Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABA A receptor potentials. Nature Neurosci 2:168–174

    Article  CAS  PubMed  Google Scholar 

  • Bishop GH (1936) The interpretation of cortical potentials. Cold Spring Harbor Symp Quant Biol 4:305–319

    Article  Google Scholar 

  • Bremer F (1938) Effets de la déafférentation complète d’une région de l’écorce cérébrale sur son activité électrique. CR Soc Biol Paris 127:355–359

    Google Scholar 

  • Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1996) Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274:771–774

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A, Sejnowski TJ (2001) Thalamocortical assemblies. Oxford University Press, Oxford

    Google Scholar 

  • Destexhe A, Sejnowski TJ (2003) Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological Reviews 83:1401–1453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Destexhe A, Babloyantz A, Sejnowski TJ (1993) Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys J 65:1538–1552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76:2049–2070

    CAS  PubMed  Google Scholar 

  • Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994a) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J Neurophysiol 72:803–818

    CAS  PubMed  Google Scholar 

  • Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994b) Modeling the control of reticular thalamic oscillations by neuromodulators. Neuro Report 5:2217–2220

    CAS  Google Scholar 

  • Destexhe A, Contreras D, Steriade M (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J Neurophysiol 79:999–1016

    CAS  PubMed  Google Scholar 

  • Fuentealba P, Crochet S, Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M (2004) Experimental evidence and modeling studies support a synchronizing role for electrical coupling in the cat thalamic reticular nucleus in vivo. Eur J Neurosci 20:111–119

    Article  PubMed Central  PubMed  Google Scholar 

  • Golomb D, Wang XJ, Rinzel J (1996) Propagation of spindle waves in a thalamic slice model. J Neurophysiol 75:750–769

    CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim U, Bal T, McCormick DA (1995) Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. J Neurophysiol 74:1301–1323

    CAS  PubMed  Google Scholar 

  • Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW (2002) Electrical synapses in the thalamic reticular nucleus. J Neurosci 22:1002–1009

    CAS  PubMed  Google Scholar 

  • Lüthi A, McCormick DA (1998) Periodicity of thalamic synchronized oscillations: the role of Ca2+-mediated upregulation of I h . Neuron 20:553–563

    Article  PubMed  Google Scholar 

  • Morison RS, Bassett DL (1945) Electrical activity of the thalamus and basal ganglia in decorticate cats. J Neurophysiol 8:309–314

    Google Scholar 

  • Scheibel ME, Scheibel AB (1966a) The organization of the nucleus reticularis thalami: a Golgi study. Brain Res 1:43–62

    Article  CAS  PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB (1966b) Patterns of organization in specific and nonspecific thalamic fields. In: Purpura DP, Yahr M (eds) The thalamus. Columbia University Press, New York, pp 13–46

    Google Scholar 

  • Scheibel ME, Scheibel AB (1967) Structural organization of nonspecific thalamic nuclei and their projection toward cortex. Brain Res 6:60–94

    Article  CAS  PubMed  Google Scholar 

  • Steriade M (2003) Neuronal substrates of sleep and epilepsy. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Steriade M, Deschênes M (1984) The thalamus as a neuronal oscillator. Brain Res Reviews 8:1–63

    Article  Google Scholar 

  • Steriade M, Deschênes M, Domich L, Mulle C (1985) Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 54:1473–1497

    CAS  PubMed  Google Scholar 

  • Steriade M, Domich L, Oakson G, Deschênes M (1987) The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol 57:260–273

    CAS  PubMed  Google Scholar 

  • von Krosigk M, Bal T, McCormick DA (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361–364

    Article  Google Scholar 

  • Wang XJ, Rinzel J (1993) Spindle rhythmicity in the reticularis thalami nucleus – synchronization among inhibitory neurons. Neurosci 53:899–904

    Article  CAS  Google Scholar 

  • Wang XJ, Golomb D, Rinzel J (1995) Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proc Natl Acad Sci USA 92:5577–5581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Further Reading

  • Steriade M, Jones EG, McCormick DA (eds) (1997) Thalamus, vol 2. Elsevier, Amsterdam/Holland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Destexhe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Destexhe, A. (2014). Spindle Oscillations: Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics