Skip to main content

Animal Models of PAH and Increased Pulmonary Blood Flow

  • Living reference work entry
  • First Online:
Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care

Abstract

Pulmonary arterial hypertension (PAH), a progressive pulmonary arteriopathy, is characterized by the development of characteristic neointimal lesions including concentric laminar intimal fibrosis and plexiform lesions.

In PAH associated with congenital heart disease, increased pulmonary blood flow (i.e., systemic-to-pulmonary shunt) is an essential trigger for the occurrence of neointimal lesions and disease development. Although neointimal development is well described histopathologically, the pathogenesis of flow-induced PAH and its typical vascular lesions is largely unknown.

Animal models play a crucial part in giving insight in new pathobiological processes in PAH and possible new therapeutic targets. However, as for any preclinical model, the pathophysiological mechanism and clinical course have to be comparable to the human disease that it is supposed to mimic. This means that animal models mimicking human PAH ideally are characterized by (1) a hit resembling the human disease, (2) specific vascular remodeling that resembles neointimal development in human PAH, and (3) progressive disease development that leads to right ventricular (RV) dysfunction and eventually death.

Therefore, this chapter will discuss currently used animal models for pulmonary hypertension that are of interest for PAH in the pediatric population, specifically PAH associated with congenital heart disease. Since increased pulmonary blood flow is known to be a trigger for PAH development in this population, particular emphasis will be put on models with increased pulmonary blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP et al (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54:S43–S54

    Article  PubMed  Google Scholar 

  2. Mooi WJ, Wagenvoort CA (1989) Biopsy pathology of the pulmonary vasculature, 1st edn. Chapman and Hall Medical, London

    Google Scholar 

  3. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM et al (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:13S–24S

    Article  CAS  PubMed  Google Scholar 

  4. Sakao S, Tatsumi K, Voelkel NF (2010) Reversible or irreversible remodeling in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 43:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF (2005) Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J 19(9):1178–1180. https://doi.org/10.1096/fj.04-3261fje

    Article  CAS  PubMed  Google Scholar 

  6. Roofthooft MTR, Van Loon RLE, Berger RMF (2009) Pulmonary arterial hypertension in children with congenital heart disease. PVRI Rev 1:203–207

    Article  Google Scholar 

  7. Zoetis T, Hurtt ME (2003) Species comparison of lung development. Birth Defects Res B Dev Reprod Toxicol 68:121–124

    Article  CAS  PubMed  Google Scholar 

  8. Faffe DS, Rocco PR, Negri EM, Zin WA (2002) Comparison of rat and mouse pulmonary tissue mechanical properties and histology. J Appl Physiol 92:230–234

    Article  PubMed  Google Scholar 

  9. Stevens T (2011) Functional and molecular heterogeneity of pulmonary endothelial cells. Proc Am Thorac Soc 8:453–457

    Article  CAS  PubMed  Google Scholar 

  10. Cool CD, Stewart JS, Werahera P, Miller GJ, Williams RL, Voelkel NF et al (1999) Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers. Evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. Am J Pathol 155:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yaginuma G, Mohri H, Takahashi T (1990) Distribution of arterial lesions and collateral pathways in the pulmonary hypertension of congenital heart disease: a computer aided reconstruction study. Thorax 45:586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gomez-Arroyo JG, Saleem SJ, Mizuno S, Syded AA, Bogaard HJ, Abbate A et al (2012) A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am J Physiol Lung Cell Mol Physiol 302(10):L977–L991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF (2009) Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297:L1013–L1032

    Article  CAS  PubMed  Google Scholar 

  14. Okada K, Tanaka Y, Bernstein M, Zhang W, Patterson GA, Botney MD (1997) Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol 151:1019–1025

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dickinson MG, Bartelds B, Molema G, Borgdorff MA, Boersma B, Takens J et al (2011) Egr-1 expression during neointimal development in flow-associated pulmonary hypertension. Am J Pathol 179:2199–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon G, Waltenberger J et al (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15:427–438

    Article  CAS  PubMed  Google Scholar 

  17. Gomez-Arroyo JG, Farkas L, Alhussaini AA, Farkas D, Kraskauskas D, Voelkel NF et al (2011) The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol 302(4):L363–L369

    Article  PubMed  CAS  Google Scholar 

  18. Rosenberg HC, Rabinovitch M (1988) Endothelial injury and vascular reactivity in monocrotaline pulmonary hypertension. Am J Phys 255:H1484–H1491

    CAS  Google Scholar 

  19. Lalich JJ, Ehrhart LA (1962) Monocrotaline-induced pulmonary arteritis in rats. J Atheroscler Res 2:482–492

    Article  CAS  PubMed  Google Scholar 

  20. Allen RP, Schelegle ES, Bennett SH (2014) Diverse forms of pulmonary hypertension remodel the arterial tree to a high shear phenotype. Am J Physiol Circ Physiol 307(3):H405–H417. https://doi.org/10.1152/ajpheart.00144.2014

    Article  CAS  Google Scholar 

  21. Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91(1):327–387. https://doi.org/10.1152/physrev.00047.2009

    Article  PubMed  Google Scholar 

  22. Kulik TJ (2012) Pulmonary blood flow and pulmonary hypertension: is the pulmonary circulation flowophobic or flowophilic? Pulm Circ 2(3):327–339. https://doi.org/10.4103/2045-8932.101644

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dickinson MG, Bartelds B, Borgdorff MA, Berger RM (2013) The role of disturbed blood flow in the development of pulmonary arterial hypertension: lessons from preclinical animal models. Am J Physiol Cell Mol Physiol 305(1):L1–L14. https://doi.org/10.1152/ajplung.00031.2013

    Article  CAS  Google Scholar 

  24. Van Der Feen DE, Bartelds B, De Boer RA, Berger RMF (2017) Pulmonary arterial hypertension in congenital heart disease: translational opportunities to study the reversibility of pulmonary vascular disease. Eur Heart J 38(26). https://doi.org/10.1093/eurheartj/ehx034

  25. Rabinovitch M, Bothwell T, Hayakawa BN, Williams WG, Trusler GA, Rowe RD, Olley PM, Cutz E (1986) Pulmonary artery endothelial abnormalities in patients with congenital heart defects and pulmonary hypertension. A correlation of light with scanning electron microscopy and transmission electron microscopy. Lab Invest 55(6):632

    CAS  PubMed  Google Scholar 

  26. Tan W, Madhavan K, Hunter KS, Park D, Stenmark KR (2014) Vascular stiffening in pulmonary hypertension: cause or consequence? (2013 Grover conference series). Pulm Circ 4(4):560–580. https://doi.org/10.1086/677370

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rabinovitch M, Haworth SG, Vance Z et al (1980) Early pulmonary vascular changes in congenital heart disease studied in biopsy tissue. Hum Pathol 11(5 Suppl):499–509

    CAS  PubMed  Google Scholar 

  28. Rabinovitch M, Guignabert C, Humbert M, Nicolls MR (2014) Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 115(1):165–175. https://doi.org/10.1161/CIRCRESAHA.113.301141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moledina S, de Bruyn A, Schievano S et al (2011) Fractal branching quantifies vascular changes and predicts survival in pulmonary hypertension: a proof of principle study. Heart 97(15):1245–1249. https://doi.org/10.1136/hrt.2010.214130

    Article  PubMed  Google Scholar 

  30. Fasules JW, Tryka F, Chipman CW, Van Devanter SH (1994) Pulmonary hypertension and arterial changes in calves with a systemic-to-left pulmonary artery connection. J Appl Physiol 77:867–875

    Article  CAS  PubMed  Google Scholar 

  31. Rondelet B, Dewachter C, Kerbaul F, Kang X, Fesler P, Brimioulle S et al (2011) Prolonged overcirculation-induced pulmonary arterial hypertension as a cause of right ventricular failure. Eur Heart J 33(8):1017–1026

    Article  PubMed  CAS  Google Scholar 

  32. Aggarwal S, Gross C, Fineman JR, Black SM (2010) Oxidative stress and the development of endothelial dysfunction in congenital heart disease with increased pulmonary blood flow: lessons from the neonatal lamb. Trends Cardiovasc Med 20:238–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rendas A, Lennox S, Reid L (1979) Aorta-pulmonary shunts in growing pigs. Functional and structural assessment of the changes in the pulmonary circulation. J Thorac Cardiovasc Surg 77:109–118

    Article  CAS  PubMed  Google Scholar 

  34. Garcia R, Diebold S (1990) Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res 24:430–432

    Article  CAS  PubMed  Google Scholar 

  35. Rondelet B, Kerbaul F, Van Beneden R, Motte S, Fesler P, Hubloue I et al (2004) Signaling molecules in overcirculation-induced pulmonary hypertension in piglets: effects of sildenafil therapy. Circulation 110:2220–2225

    Article  CAS  PubMed  Google Scholar 

  36. Rondelet B, Dewachter L, Kerbaul F, Dewachter C, Hubloue I, Fesler P et al (2010) Sildenafil added to sitaxsentan in overcirculation-induced pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 299:H1118–H1123

    Article  CAS  PubMed  Google Scholar 

  37. Rondelet B, Kerbaul F, Motte S, van Beneden R, Remmelink M, Brimioulle S et al (2003) Bosentan for the prevention of overcirculation-induced experimental pulmonary arterial hypertension. Circulation 107:1329–1335

    Article  CAS  PubMed  Google Scholar 

  38. Wauthy P, Abdel Kafi S, Mooi WJ, Naeije R, Brimioulle S (2003) Inhaled nitric oxide versus prostacyclin in chronic shunt-induced pulmonary hypertension. J Thorac Cardiovasc Surg 126:1434–1441

    Article  CAS  PubMed  Google Scholar 

  39. Schnader J, Schloo BL, Anderson W, Stephenson LW, Fishman AP (1996) Chronic pulmonary hypertension in sheep: temporal progression of lesions. J Surg Res 62:243–250

    Article  CAS  PubMed  Google Scholar 

  40. Bousamra M 2nd, Rossi R, Jacobs E, Parviz M, Busch C, Nelin LD et al (2000) Systemic lobar shunting induces advanced pulmonary vasculopathy. J Thorac Cardiovasc Surg 120:88–98

    Article  PubMed  Google Scholar 

  41. Heath D, Donald DE, Edwards JE (1959) Pulmonary vascular changes in a dog after aortopulmonary anastomosis for four years. Br Heart J 21:187–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Corno AF, Tozzi P, Genton CY, von Segesser LK (2003) Surgically induced unilateral pulmonary hypertension: time-related analysis of a new experimental model. Eur J Cardiothorac Surg 23:513–517

    Article  PubMed  Google Scholar 

  43. Tanaka Y, Schuster DP, Davis EC, Patterson GA, Botney MD (1996) The role of vascular injury and hemodynamics in rat pulmonary artery remodeling. J Clin Invest 98:434–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. White RJ, Meoli DF, Swarthout RF, Kallop DY II, Galaria JLH et al (2007) Plexiform-like lesions and increased tissue factor expression in a rat model of severe pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 293:L583–L590

    Article  CAS  PubMed  Google Scholar 

  45. Bartelds B, van Loon RL, Mohaupt S, Wijnberg H, Dickinson M, Boersma B et al (2011) Mast cell inhibition improves pulmonary vascular remodeling in pulmonary hypertension. Chest 141(3):651–660

    Article  PubMed  CAS  Google Scholar 

  46. van Albada ME, Schoemaker RG, Kemna MS, Cromme-Dijkhuis AH, van Veghel R, Berger RM (2005) The role of increased pulmonary blood flow in pulmonary arterial hypertension. Eur Respir J 26:487–493

    Article  PubMed  Google Scholar 

  47. Nishimura T, Faul JL, Berry GJ, Kao PN, Pearl RG (2003) Effect of a surgical aortocaval fistula on monocrotaline-induced pulmonary hypertension. Crit Care Med 31:1213–1218

    Article  CAS  PubMed  Google Scholar 

  48. van Albada ME, Bartelds B, Wijnberg H, Mohaupt S, Dickinson MG, Schoemaker RG et al (2010) Gene expression profile in flow-associated pulmonary arterial hypertension with neointimal lesions. Am J Physiol Lung Cell Mol Physiol 298:L483–L491

    Article  PubMed  CAS  Google Scholar 

  49. Levy M, Maurey C, Celermajer DS, Vouhe PR, Danel C, Bonnet D et al (2007) Impaired apoptosis of pulmonary endothelial cells is associated with intimal proliferation and irreversibility of pulmonary hypertension in congenital heart disease. J Am Coll Cardiol 49:803–810

    Article  CAS  PubMed  Google Scholar 

  50. Nishimura T, Faul JL, Berry GJ, Vaszar LT, Qiu D, Pearl RG et al (2002) Simvastatin attenuates smooth muscle neointimal proliferation and pulmonary hypertension in rats. Am J Respir Crit Care Med 166:1403–1408

    Article  PubMed  Google Scholar 

  51. Buhain WJ, Brody JS (1973) Compensatory growth of the lung following pneumonectomy. J Appl Physiol 35:898–902

    Article  CAS  PubMed  Google Scholar 

  52. Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F et al (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 54:S10–S19

    Article  CAS  PubMed  Google Scholar 

  53. Vaszar LT, Nishimura T, Storey JD, Zhao G, Qiu D, Faul JL et al (2004) Longitudinal transcriptional analysis of developing neointimal vascular occlusion and pulmonary hypertension in rats. Physiol Genomics 17:150–156

    Article  CAS  PubMed  Google Scholar 

  54. Hamada H, Terai M, Kimura H, Hirano K, Oana S, Niimi H (1999) Increased expression of mast cell chymase in the lungs of patients with congenital heart disease associated with early pulmonary vascular disease. Am J Respir Crit Care Med 160:1303–1308

    Article  CAS  PubMed  Google Scholar 

  55. Dorfmuller P, Chaumais MC, Giannakouli M, Durand-Gasselin I, Raymond N, Fadel E et al (2011) Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension. Respir Res 1(2):119

    Article  CAS  Google Scholar 

  56. Bowers R, Cool C, Murphy RC, Tuder RM, Hopken MW, Flores SC et al (2004) Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169:764–769

    Article  PubMed  Google Scholar 

  57. Okada K, Bernstein ML, Zhang W, Schuster DP, Botney MD (1998) Angiotensin-converting enzyme inhibition delays pulmonary vascular neointimal formation. Am J Respir Crit Care Med 158:939–950

    Article  CAS  PubMed  Google Scholar 

  58. Rai PR, Cool CD, King JAC et al (2008) The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 178(6):558–564. https://doi.org/10.1164/rccm.200709-1369PP

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ranchoux B, Meloche J, Paulin R, Boucherat O, Provencher S, Bonnet S (2016) DNA damage and pulmonary hypertension. Int J Mol Sci 17(6). https://doi.org/10.3390/ijms17060990

  60. Meloche J, Potus F, Vaillancourt M et al (2015) Bromodomain-containing protein 4: the epigenetic origin of pulmonary arterial hypertension. Circ Res 117(6):525–535. https://doi.org/10.1161/CIRCRESAHA.115.307004

    Article  CAS  PubMed  Google Scholar 

  61. Li M, Vattulainen S, Aho J et al (2014) Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA repair in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 50(6):1118–1128. https://doi.org/10.1165/rcmb.2013-0349OC

    Article  CAS  PubMed  Google Scholar 

  62. Warboys CM, de Luca A, Amini N et al (2014) Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler Thromb Vasc Biol 34(5):985–995. https://doi.org/10.1161/ATVBAHA.114.303415

    Article  CAS  PubMed  Google Scholar 

  63. van der Feen DE, Berger RMF, Bartelds B (2019) Converging paths of pulmonary arterial hypertension and cellular senescence. Am J Respir Cell Mol Biol. https://doi.org/10.1165/rcmb.2018-0329TR

  64. Van der Feen DE, Kurakula K, Tremblay E et al (2019) Multicenter preclinical validation of BET inhibition for the treatment of pulmonary arterial hypertension. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.201812-2275OC

  65. Wang Z, Yang K, Zheng Q et al (2018) Divergent changes of p53 in pulmonary arterial endothelial and smooth muscle cells involved in the development of pulmonary hypertension. Am J Physiol Cell Mol Physiol 316(1):L216–L228. https://doi.org/10.1152/ajplung.00538.2017

    Article  CAS  Google Scholar 

  66. Voelkel NF, Vandivier RW, Tuder RM (2006) Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol 290:L209–L221

    Article  CAS  PubMed  Google Scholar 

  67. Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD et al (2010) Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 121:2747–2754

    Article  PubMed  Google Scholar 

  68. Taraseviciene-Stewart L, Scerbavicius R, Choe KH, Cool C, Wood K, Tuder RM et al (2006) Simvastatin causes endothelial cell apoptosis and attenuates severe pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 291:L668–L676

    Article  CAS  PubMed  Google Scholar 

  69. Abe K, Shinoda M, Tanaka M et al (2016) Haemodynamic unloading reverses occlusive vascular lesions in severe pulmonary hypertension. Cardiovasc Res 111(1):16–25. https://doi.org/10.1093/cvr/cvw070

    Article  CAS  PubMed  Google Scholar 

  70. Sakao S, Tatsumi K (2011) The effects of antiangiogenic compound SU5416 in a rat model of pulmonary arterial hypertension. Respiration 81:253–261

    Article  CAS  PubMed  Google Scholar 

  71. Yee KW, O’Farrell AM, Smolich BD, Cherrington JM, McMahon G, Wait CL et al (2002) SU5416 and SU5614 inhibit kinase activity of wild-type and mutant FLT3 receptor tyrosine kinase. Blood 100:2941–2949

    Article  CAS  PubMed  Google Scholar 

  72. Moreno-Vinasco L, Gomberg-Maitland M, Maitland ML, Desai AA, Singleton PA, Sammani S et al (2008) Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genomics 33:278–291

    Article  CAS  PubMed  Google Scholar 

  73. Ivy DD, McMurtry IF, Colvin K, Imamura M, Oka M, Lee DS et al (2005) Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension. Circulation 111:2988–2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ivy DD, Yanagisawa M, Gariepy CE, Gebb SA, Colvin KL, McMurtry IF (2002) Exaggerated hypoxic pulmonary hypertension in endothelin B receptor-deficient rats. Am J Physiol Lung Cell Mol Physiol 282:L703–L712

    Article  CAS  PubMed  Google Scholar 

  75. Aldred MA, Vijayakrishnan J, James V, Soubrier F, Gomez-Sanchez MA, Martensson G et al (2006) BMPR2 gene rearrangements account for a significant proportion of mutations in familial and idiopathic pulmonary arterial hypertension. Hum Mutat 27:212–213

    Article  PubMed  Google Scholar 

  76. Beppu H, Ichinose F, Kawai N, Jones RC, Yu PB, Zapol WM et al (2004) BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol 287:L1241–L1247

    Article  CAS  PubMed  Google Scholar 

  77. West J, Harral J, Lane K, Deng Y, Ickes B, Crona D et al (2008) Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions. Am J Physiol Lung Cell Mol Physiol 295:L744–L755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yasuda T, Tada Y, Tanabe N, Tatsumi K, West J (2011) Rho-kinase inhibition alleviates pulmonary hypertension in transgenic mice expressing a dominant-negative type II bone morphogenetic protein receptor gene. Am J Physiol Lung Cell Mol Physiol 301:L667–L674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hong KH, Lee YJ, Lee E, Park SO, Han C, Beppu H et al (2008) Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118:722–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB (2009) Interleukin-6 overexpression induces pulmonary hypertension. Circ Res 104:236–244, 28p following 244

    Article  CAS  PubMed  Google Scholar 

  81. Greenway S, van Suylen RJ, Du Marchie Sarvaas G, Kwan E, Ambartsumian N, Lukanidin E et al (2004) S100A4/Mts1 produces murine pulmonary artery changes resembling plexogenic arteriopathy and is increased in human plexogenic arteriopathy. Am J Pathol 164:253–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Albada ME, van Veghel R, Cromme-Dijkhuis AH, Schoemaker RG, Berger RM (2006) Treprostinil in advanced experimental pulmonary hypertension: beneficial outcome without reversed pulmonary vascular remodeling. J Cardiovasc Pharmacol 48:249–254

    Article  PubMed  CAS  Google Scholar 

  83. van Albada ME, Berger RM, Niggebrugge M, van Veghel R, Cromme-Dijkhuis AH, Schoemaker RG (2006) Prostacyclin therapy increases right ventricular capillarisation in a model for flow-associated pulmonary hypertension. Eur J Pharmacol 549:107–116

    Article  PubMed  CAS  Google Scholar 

  84. Oka M, Homma N, Taraseviciene-Stewart L, Morris KG, Kraskauskas D, Burns N et al (2007) Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res 100:923–929

    Article  CAS  PubMed  Google Scholar 

  85. Homma N, Nagaoka T, Karoor V, Imamura M, Taraseviciene-Stewart L, Walker LA et al (2008) Involvement of RhoA/Rho kinase signaling in protection against monocrotaline-induced pulmonary hypertension in pneumonectomized rats by dehydroepiandrosterone. Am J Physiol Lung Cell Mol Physiol 295:L71–L78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nishimura T, Faul JL, Berry GJ, Veve I, Pearl RG, Kao PN (2001) 40-O-(2-hydroxyethyl)-rapamycin attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med 163:498–502

    Article  CAS  PubMed  Google Scholar 

  87. van Albada ME, du Marchie Sarvaas GJ, Koster J, Houwertjes MC, Berger RM, Schoemaker RG (2008) Effects of erythropoietin on advanced pulmonary vascular remodelling. Eur Respir J 31:126–134

    Article  PubMed  CAS  Google Scholar 

  88. Dickinson MG, Bartelds B, Molema G et al (2011) Egr-1 expression during neointimal development in flow-associated pulmonary hypertension. Am J Pathol 179(5):2199–2209. https://doi.org/10.1016/j.ajpath.2011.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. van Albada ME, Bartelds B, Wijnberg H et al (2010) Gene expression profile in flow-associated pulmonary arterial hypertension with neointimal lesions. Am J Physiol Cell Mol Physiol 298(4):L483–L491. https://doi.org/10.1152/ajplung.00106.2009

    Article  CAS  Google Scholar 

  90. van der Feen DE, Dickinson MG, Bartelds B et al (2015) Egr-1 identifies Neointimal remodeling and relates to progression in human pulmonary arterial hypertension. J Hear lung Transplant 35:481

    Article  Google Scholar 

  91. Dickinson MG, Kowalski PS, Bartelds B et al (2014) A critical role for Egr-1 during vascular remodelling in pulmonary arterial hypertension. Cardiovasc Res 103(4):573–584. https://doi.org/10.1093/cvr/cvu169

    Article  CAS  PubMed  Google Scholar 

  92. Long LL (2015) Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med 21:777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Spiekerkoetter E (2013) FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest 123(8):3600–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nickel NP, Spiekerkoetter E, Gu M et al (2015) Elafin reverses pulmonary hypertension via caveolin-1-dependent bone morphogenetic protein signaling. Am J Respir Crit Care Med 191(11):1273–1286. https://doi.org/10.1164/rccm.201412-2291OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Spiekerkoetter E, Sung YK, Sudheendra D et al (2015) Low-dose FK506 (Tacrolimus) in end-stage pulmonary arterial hypertension. Am J Respir Crit Care Med 192(2):254–257. https://doi.org/10.1164/rccm.201411-2061LE

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Legchenko E, Chouvarine P, Borchert P et al (2018) PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation. Sci Transl Med 10(438):1–18. https://doi.org/10.1126/scitranslmed.aao0303

    Article  CAS  Google Scholar 

  97. Provencher S, Archer SL, Ramirez FD et al (2018) Standards and methodological rigor in pulmonary arterial hypertension preclinical and translational research. Circ Res 122(7):1021–1032. https://doi.org/10.1161/CIRCRESAHA.117.312579

    Article  CAS  PubMed  Google Scholar 

  98. Drummond GB, Paterson DJ, McGrath JC (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Exp Physiol 95(8):842–844. https://doi.org/10.1113/expphysiol.2010.053793

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Dickinson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dickinson, M.G., van der Feen, D.E., Bartelds, B., Berger, R.M.F. (2021). Animal Models of PAH and Increased Pulmonary Blood Flow. In: da Cruz, E.M., Ivy, D., Hraska, V., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4999-6_203-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4999-6_203-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4999-6

  • Online ISBN: 978-1-4471-4999-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics