Skip to main content

Hybrid Machining Process

  • Living reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

Advanced engineering materials, including inter alia fiber-reinforced composites, super alloys, and ceramics, offer superior thermal, physical, chemical, and mechanical properties in the form of better strength, higher weight-to-volume ratio, improved corrosion, and wear resistance, to name a few. These properties have permitted the design of products with better properties, but they have also made these advanced materials difficult to machine by conventional machining processes thus making them unsuitable and uneconomical. Complex 3-D forms, tight tolerances, acute surface finishes, and stringent design constraints have necessitated research of new machining methods capable of processing the difficult-to-machine advanced materials economically and accurately. The basic idea behind a hybrid machining process is the synergistic combination of constituent machining processes in order to overcome their individual shortcomings and achieve effective material removal. This chapter has summarized some important aspects of the literature on hybrid machining processes. Machining processes in general are categorized into mechanical, thermal, chemical, and electrochemical processes based on their dominant material removal mechanism. Working principles and mechanisms material removal of existing hybrid processes and their capabilities have been discussed. It is noted that the complex physicochemical, electrical, thermal, and mechanical interactions associated with hybrid machining processes are yet to be fully understood, and there exists a knowledge gap due to the unresolved issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aspinwall DK et al (2001) Hybrid high speed machining (HSM): system design and experimental results for grinding/HSM and EDM/HSM. Ann CIRP 50(1):145–148

    Article  Google Scholar 

  • Basak I, Ghosh A (1996) Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification. J Mater Process Technol 62(1–3):46–53

    Article  Google Scholar 

  • Basak I, Ghosh A (1997) Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification. J Mater Process Technol 71(3):350–359

    Article  Google Scholar 

  • Bhattacharyya B, Doloi BN, Sorkhel SK (1999) Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. J Mater Process Technol 95(1–3):145–154

    Article  Google Scholar 

  • Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32(3):153–172

    Article  Google Scholar 

  • Cao XD, Kim BH, Chu CN (2009) Micro-structuring of glass with features less than 100 μm by electrochemical discharge machining. Precis Eng 33(4):459–465

    Article  Google Scholar 

  • Cook NH, Foote GB, Jordan P, Kalyani BN (1973) Experimental studies in electro-machining. Trans ASME J Eng Indus 95(4):945–950

    Google Scholar 

  • Curodeau A et al (2008) Ultrasonic abrasive μ-machining with thermoplastic tooling. Int J Mach Tool Manuf 48(14):1553–1561

    Article  Google Scholar 

  • Curtis DT et al (2009) Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points. CIRP Ann Manuf Technol 58(1):173–176

    Article  MathSciNet  Google Scholar 

  • Dabrowski L, Marciniak M, Szewczyk T (2006) Analysis of abrasive flow machining with an electrochemical process aid. J Eng Manuf 220(3):397–403

    Article  Google Scholar 

  • De Silva AKM et al (2011) Thermal effects in laser assisted jet electrochemical machining. CIRP Ann Manuf Technol 60(1):243–246

    Article  Google Scholar 

  • Endo T, Tsujimoto T, Mitsui K (2008) Study of vibration-assisted micro-EDM – the effect of vibration on machining time and stability of discharge. Precis Eng 32(4):269–277

    Article  Google Scholar 

  • Huang H et al (2003) Ultrasonic vibration assisted electro-discharge machining of microholes in Nitinol. J Micromech Microeng 13(5):693

    Article  Google Scholar 

  • Hur J et al (2002) Hybrid rapid prototyping system using machining and deposition. CAD Comput Aid Des 34(10):741–754

    Article  Google Scholar 

  • Jain VK, Chak SK (2000) Electrochemical spark trepanning of alumina and quartz. Mach Sci Technol 4(2):277–290

    Article  Google Scholar 

  • Jain VK, Rao PS, Choudhury SK, Rajurkar KP (1991) Experimental investigations into travelling wire electrochemical spark machining (TW-ECSM) of composites. J Eng Ind 113:75–84

    Article  Google Scholar 

  • Jain VK, Choudhury SK, Ramesh KM (2002) On the machining of alumina and glass. Int J Mach Tool Manuf 42(11):1269–1276

    Article  Google Scholar 

  • Jui SK, Kamaraj AB, Sundaram MM (2013) Fabrication of high aspect ratio micro holes in glass by micro electrochemical discharge machining. Submitted to NAMRI/SME, vol 41

    Google Scholar 

  • Kasashima N, Kurita T (2012) Laser and electrochemical complex machining of micro-stent with on-machine three-dimensional measurement. Opt Lasers Eng 50(3):354–358

    Article  Google Scholar 

  • Kim J-D, Choi M-S (1995) Simulation for the prediction of surface-accuracy in magnetic abrasive machining. J Mater Process Technol 53(3–4):630–642

    Article  MathSciNet  Google Scholar 

  • Kim S et al (2010) Hybrid micromachining using a nanosecond pulsed laser and micro EDM. J Micromech Microeng 20:015037

    Article  Google Scholar 

  • Knights M (2005) Hybrid prototyping process combines casting and machining. Plast Technol 51(10):45–51

    Google Scholar 

  • Komanduri R, Lucca DA, Tani Y (1997) Technological advances in fine abrasive processes. Ann CIRP 46(2):545–596

    Article  Google Scholar 

  • Kozak J (1996) The analysis of the interactions of mechanical abrasion and electrochemical dissolution processes in AECG. In: Proceedings of the 19th Science Symposium on Abrasive Machining, Łódź, pp 275–282 (in Polish)

    Google Scholar 

  • Kozak J, Oczos KE (2001) Selected problems of abrasive hybrid machining. J Mater Process Technol 109(3):360–366

    Article  Google Scholar 

  • Kozak J, Rajurkar KP (2000) Hybrid machining processes evaluation and development. In: Proceedings of the second international conference on machining and measurements of sculptured surfaces, Kraków, Poland, pp 501–536

    Google Scholar 

  • Kuo C-L, Huang J-D, Liang H-Y (2003) Fabrication of 3D metal microstructures using a hybrid process of micro-EDM and laser assembly. Int J Adv Manuf Technol 21(10–11):796–800

    Article  Google Scholar 

  • Kurita T, Watanabe S, Hattori M (2001) Development of hybrid micro machine tool. In: Proceedings of the second international symposium on environmentally conscious design and inverse manufacturing, Kraków, Poland, pp 797–802

    Google Scholar 

  • Lauwers B (2011) Surface integrity in hybrid machining processes. Proc Eng 19:241–251

    Article  Google Scholar 

  • Lee SJ (2005) Micro/meso-scale shapes machining by micro EDM process. Int J Kor Soc Precis Eng 6(2):5–11

    Google Scholar 

  • Lim H, Kumar AS, Rahman M (2002) Improvement of form accuracy in hybrid machining of microstructures. J Electron Mater 31(10):1032–1038

    Article  Google Scholar 

  • Liu HS et al (2006) Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining. Int J Mach Tool Manuf 46(1):80–87

    Article  Google Scholar 

  • McGeough JA (2002) Micromachining of engineering materials. Marcel Dekker, New York, 397

    Google Scholar 

  • Mediliyegedara TKKR et al (2005) New developments in the process control of the hybrid electro chemical discharge machining (ECDM) process. J Mater Process Technol 167:338–343

    Article  Google Scholar 

  • Mognol P et al (2006) High speed milling, electro discharge machining and direct metal laser sintering: a method to optimize these processes in hybrid rapid tooling. Int J Adv Manuf Technol 29(1–2):35–40

    Article  Google Scholar 

  • Murti V, Philip P (1987) An analysis of the debris in ultrasonic-assisted electrical discharge machining. Wear 117(2):241–250

    Article  Google Scholar 

  • Pa PS (2007) Electrode form design of large holes of die material in ultrasonic electrochemical finishing. J Mater Process Technol 192–193:470–477

    Article  Google Scholar 

  • Pa PS (2009) Super finishing with ultrasonic and magnetic assistance in electrochemical micro-machining. Electrochim Acta 54(25):6022–6027

    Article  Google Scholar 

  • Pajak PT et al (2006) Precision and efficiency of laser assisted jet electrochemical machining. Precis Eng 30(3):288–298

    Article  Google Scholar 

  • Radhakrishnan G et al (2003) Hybrid pulsed laser deposition and Si-surface-micromachining process for integrated TiC coatings in moving MEMS. Appl Phys Mater Sci Process 77(2):175–184

    MathSciNet  Google Scholar 

  • Rajurkar KP et al (2006) Micro and nano machining by electro-physical and chemical processes. Ann CIRP 55(2):643–666

    Article  Google Scholar 

  • Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11(4):287–300

    Article  Google Scholar 

  • Schuh G, Kreysa J, Orilski S (2009) Roadmap “Hybride Produktion”–Wie 1+ 1= 3-Effekte in der Produktion maximiert werden können. ZWF – Zeitschrift für wirtschaftlichen Fabrikbetrieb 104(5):385–391

    Google Scholar 

  • Shabgard M, Sadizadeh B, Kakoulvand H (2009) The effect of ultrasonic vibration of work-piece in electrical discharge machining of AISIH13 tool steel. World Acad Sci Eng Technol 52:392–396

    Google Scholar 

  • Skoczypiec S (2011) Research on ultrasonically assisted electrochemical machining process. Int J Adv Manuf Technol 52(5):565–574

    Article  Google Scholar 

  • Sommer C (2000) Non-traditional machining handbook. Advance Pub, Houston, 432

    Google Scholar 

  • Srivastava V, Pandey PM (2012) Effect of process parameters on the performances of EDM process with ultrasonic assisted cryogenically cooled electrode. J Manuf Processes 14:393–402

    Article  Google Scholar 

  • Stephen A, Vollertsen F (2010) Mechanisms and processing limits in laser thermochemical machining. CIRP Ann Manuf Technol 59(1):251–254

    Article  Google Scholar 

  • Sugioka K et al (2002) Microprocessing of glass by hybrid laser processing. Proc SPIE 4760(I):230–238

    Article  Google Scholar 

  • Sundaram M, Pavalarajan G, Rajurkar K (2008) A study on process parameters of ultrasonic assisted micro EDM based on Taguchi method. J Mater Eng Perform 17(2):210–215

    Article  Google Scholar 

  • Tandon S et al (1990) Investigations into machining of composites. Precis Eng 12(4):227–238

    Article  Google Scholar 

  • Tong H, Li Y, Wang Y (2008) Experimental research on vibration assisted EDM of micro-structures with non-circular cross-section. J Mater Process Technol 208(1–3):289–298

    Article  Google Scholar 

  • Wang X, Ying B, Liu W (1996) EDM dressing of fine grain super abrasive grinding wheel. J Mater Process Technol 62(4):299–302

    Article  Google Scholar 

  • Wang ZY et al (2003) Hybrid machining of Inconel 718. Int J Mach Tool Manuf 43(13):1391–1396

    Article  Google Scholar 

  • Wang W et al (2011) Abrasive electrochemical multi-wire slicing of solar silicon ingots into wafers. CIRP Ann Manuf Technol 60(1):255–258

    Article  Google Scholar 

  • Wüthrich R, Fascio V (2005) Machining of non-conducting materials using electrochemical discharge phenomenon – an overview. Int J Mach Tool Manuf 45(9):1095–1108

    Article  Google Scholar 

  • Yan BH et al (2002) Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining. Int J Mach Tool Manuf 42(10):1105–1112

    Article  Google Scholar 

  • Yang I, Park MS, Chu CN (2009) Micro ECM with ultrasonic vibrations using a semi-cylindrical tool. Int J Precis Eng Manuf 10(2):5–10

    Article  MATH  Google Scholar 

  • Yeo SH, Murali M, Cheah HT (2004) Magnetic field assisted micro electro-discharge machining. J Micromech Microeng 14(11):1526–1529

    Article  Google Scholar 

  • Zheng Z-P et al (2007) 3D microstructuring of Pyrex glass using the electrochemical discharge machining process. J Micromech Microeng 17(5):960

    Article  Google Scholar 

  • Zhu D et al (2011) Precision machining of small holes by the hybrid process of electrochemical removal and grinding. CIRP Ann Manuf Technol 60(1):247–250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murali Meenakshi Sundaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Sundaram, M.M. (2014). Hybrid Machining Process . In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4976-7_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4976-7_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-4976-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics