Skip to main content

Live Viral Vectors

Semliki Forest Virus

  • Protocol
Vaccine Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 87))

  • 1208 Accesses

Abstract

A continuously expanding body of data supports the use of recombinant viral vectors as vehicles in vaccination. Studies have shown that when antigen-expressing viral vectors are used alone or in boosting following a naked DNA prime, the T- and B-cell responses elicited are both broader and of a higher order of magnitude than following immunization with DNA alone (16). The mechanisms underlying the efficiency of live viral vectors probably lie in their replicative nature. Although in most cases the vectors are attenuated or “suicidal,” resulting in nonproductive infections (e.g., no spread of progeny virus in the vaccinee), the vectors replicate inside the target cell, mimicking an authentic virus infection and resulting in the activation of innate anti-viral responses in the antigen-expressing cell. Live viral vectors thus come with built-in immuno-stimulatory properties much like a live attenuated virus vaccine, giving these platforms an advantage over strategies using conventional plasmid DNA to express antigen. Another characteristic of many viral vaccine vectors is that they induce apoptosis in the target cell. This may contribute to the generation of a specific immune response caused by uptake of antigen-loaded apoptotic bodies by dendritic cells and consequent activation of a specific response through cross-presentation. Further studies are required to formally demonstrate to what extent such mechanisms contribute to the activity of live viral vectors. It will be important to learn more about how the different viral vectors work in relation to each other and what other mechanisms are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moss, B. (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination and safety. Proc. Natl. Acad. Sci. USA 15, 11,341–11,348.

    Article  Google Scholar 

  2. Schneider, J., Gilbert, S. C., Blanchard, T.J., Hanke, T., Robson, K. J., Hannan, C. M., et al. (1998) Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat. Med. 4, 397–402.

    Article  PubMed  CAS  Google Scholar 

  3. Amara, R. R., Villinger, F., Altman, J. D., Lydy, S. L., O’Neil, S. P., Staprans, S. I., et al. (2001) Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292, 69–74

    Article  PubMed  CAS  Google Scholar 

  4. Hel, Z., Tsai, W. P., Thornton, A., Nacsa, J., Giuliani, L., Tryniszewska E., et al. (2001) Potentiation of simian immunodeficiency virus (SIV)-specific CD4(+) and CD8(+) T cell responses by a DNA-SIV and NYVAC-SIV prime/boost regimen. J. Immunol. 167, 7180–7191

    PubMed  CAS  Google Scholar 

  5. Shiver, J. W., Fu, T-M., Chen, L., Casimiro, D. R., Davies M-E., Evans, R. K., et al. (2002) Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415, 331–334

    Article  PubMed  CAS  Google Scholar 

  6. Gilbert, S. C., Schneider, J., Hannan, C. M., Hu, J. T., Plebanski, M., Sinden, R., et al. (2002) Enhanced CD8 T cell immunogenicity and protective efficiency in a mouse malaria model using recombinant adenoviral vaccine in heterologous prime-boost immunisation regimes. Vaccine 20, 1039–1045

    Article  PubMed  CAS  Google Scholar 

  7. Strauss, J. H. and Strauss, E. G. (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58, 491–562.

    PubMed  CAS  Google Scholar 

  8. Frolov I., Hoffman T.A., Prágai B. M., Dryga S. A., Huang H. V., Schlesinger S., et al. (1996) Alphavirus-based expression vectors: strategies and applications. Proc. Natl. Acad. Sci. USA 93, 11,371–11,377.

    Article  PubMed  CAS  Google Scholar 

  9. Schlesinger, S. (2001) Alphavirus vectors: development and potential therapeutic applications. Expert Opin. Biol. Ther. 1, 177–91.

    Article  PubMed  CAS  Google Scholar 

  10. Liljeström, P. and Garoff, H. (1991) A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology 9, 1356–1361.

    Article  PubMed  Google Scholar 

  11. Zhou, X., Berglund, P., Rhodes, G., Parker, S. E., Jondal, M., and Liljeström, P. (1994) Selfreplicating Semliki Forest virus RNA as recombinant vaccine. Vaccine 12, 1510–1514.

    Article  PubMed  CAS  Google Scholar 

  12. Mossman, S. P., Bex, F., Berglund, P., Arthos, J., O’Neil, S. P., Riley, D., et al. (1996) Protection against lethal simian immunodeficiency virus SIVsmmPBj14 disease by a recombinant Semliki Forest virus gp160 vaccine and by a gp120 subunit vaccine. J. Virol. 70, 1953–1960.

    PubMed  CAS  Google Scholar 

  13. Berglund, P., Smerdou, C., Fleeton, M. N., Tubulekas, I., and Liljeström, P. (1998) Enhancing immune responses using suicidal DNA vaccines. Nat. Biotechnol. 16, 562–565.

    Article  PubMed  CAS  Google Scholar 

  14. Berglund, P., Fleeton, M. N., Smerdou, C., and Liljeström, P. (1999) Immunization with recombinant Semliki Forest virus induces protection against influenza challenge in mice. Vaccine 17, 497–507

    Article  PubMed  CAS  Google Scholar 

  15. Atkins, G. J., Sheahan, B. J., Liljestrom, P. (1999) The molecular pathogenesis of Semliki Forest virus: a model virus made useful? J. Gen. Virol. 80, 2287–2297.

    PubMed  CAS  Google Scholar 

  16. Smerdou, C. and Liljeström, P. (2000) Alphavirus vectors: from protein production to gene therapy. Gene Ther. Reg. 1, 33–63.

    Article  CAS  Google Scholar 

  17. Fleeton, M. N., Chen, M., Berglund, P., Rhodes, G., Parker, S. E., Murphy, M., et al. (2001) Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J. Infect. Dis. 183, 1395–1398.

    Article  PubMed  CAS  Google Scholar 

  18. Lemiale, F., Brand, D., Lebigot, S., Verrier, B., Buzelay, L., Brunet, S., et al. (2001) Immunogenicity of recombinant envelope glycoproteins derived from T-cell line-adapted isolates or primary HIV isolates. J. AIDS 26, 413–422.

    CAS  Google Scholar 

  19. Morris-Downes, M. M., Sheahan, B. J., Fleeton, M. N., Liljeström, P., Reid, H. W., and Atkins, G. J. (2001) A recombinant Semliki Forest virus particle vaccine encoding the prME and NS1 proteins of louping ill virus is effective in a sheep challenge model. Vaccine 19, 3877–3884.

    Article  PubMed  CAS  Google Scholar 

  20. Xiong, C., Levis, R., Shen, P., Schlesinger, S., Rice, C. M., and Huang, H. V. (1989) Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243, 1188–1191.

    Article  PubMed  CAS  Google Scholar 

  21. Hariharan, M. J., Driver, D.. A., Townsend, K., Brumm, D., Polo, J. M., Belli, B. A., et al. (1998) DNA immunization against Herpes Simplex Virus: enhanced efficacy using a Sindbis virus-based vector. J. Virol. 72, 950–958.

    PubMed  CAS  Google Scholar 

  22. Ying, H., Zaks, T. Z., Wang, R. F., Irvine, K. R., Kammula, U. S., Marincola, F. M., et al. (1999) Cancer therapy using a self-replicating RNA vaccine. Nat. Med. 5, 823–827.

    Article  PubMed  CAS  Google Scholar 

  23. Leitner, W. W., Ying, H., Driver, D. A., Dubensky, T. W., and Restifo, N. P. (2000) Enhancement of tumor-specific immune response with plasmid DNA replicon vectors. Cancer Res. 60, 51–55.

    PubMed  CAS  Google Scholar 

  24. Vajdy, M., Gardner, J., Neidleman, J., Cuadra, L., Greer, C., Perri, S., et al. (2001) Human immunodeficiency virus type 1 Gag-specific vaginal immunity and protection after local immunizations with sindbis virus-based replicon particles. J. Infect. Dis. 15, 1613–1616.

    Article  Google Scholar 

  25. Pushko, P., Parker, M., Ludwig, G. V., Davis, N. L., Johnston, R. E., and Smith, J. F. (1997) Replicon-helper systems from attenuated Venezuelan equine encephalitis virus-Expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239, 389–401.

    Article  PubMed  CAS  Google Scholar 

  26. Caley, I. J., Betts, M. R., Davis, N. L., Swanstrom, R., Frelinger, J. A., and Johnston, R. E. (1999) Venezuelan equine encephalitis virus vectors expressing HIV-1 proteins: vector design strategies for improved vaccine efficacy. Vaccine 17, 3124–3135.

    Article  PubMed  CAS  Google Scholar 

  27. Harrington, P. R., Yount, B., Johnston, R. E., Davis, N., Moe, C., and Baric, R. S. (2002) Systemic, mucosal, and heterotypic immune induction in mice inoculated with Venezuelan equine encephalitis replicons expressing Norwalk virus-like particles. J. Virol. 76, 730–742.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenbloom, M., Leikin, J. B., Vogel, S. N., and Chaudry, Z. A. (2002) Biological and chemical agents: a brief synopsis. Am. J. Ther. 9, 5–14.

    Article  PubMed  Google Scholar 

  29. Sjöberg, E. M., Suomalainen, M., and Garoff, H. (1994) A significantly improved Semliki Forest virus expression system based on translation enhancer segments from the viral capsid gene. Bio/Technology 12, 1127–1131.

    Article  PubMed  Google Scholar 

  30. Mathiot, C. C., Grimaud, G., Garry, P., Bouquety, J. C., Mada, A., Daguisy, A. M., et al. (1990) An outbreak of human Semliki Forest virus infections in Central African Republic. Am. J. Trop. Hyg. 42, 386–393.

    CAS  Google Scholar 

  31. Morris-Downes, M. M., Phenix, K. V., Smyth, J., Sheahan, B. J., Lileqvist, S., Mooney, D. A., et al. (2001) Semliki Forest virus-based vaccines: persistence, distribution and pathological analysis in two animal systems. Vaccine 19, 1978–1988.

    Article  PubMed  CAS  Google Scholar 

  32. Smerdou, C. and Liljeström, P. (1999) Two-helper RNA system for production of recombinant Semliki forest virus particles. J. Virol. 73, 1092–1098.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Karlsson, G.B., Liljeström, P. (2003). Live Viral Vectors. In: Robinson, A., Hudson, M.J., Cranage, M.P. (eds) Vaccine Protocols. Methods in Molecular Medicine™, vol 87. Humana Press. https://doi.org/10.1385/1-59259-399-2:69

Download citation

  • DOI: https://doi.org/10.1385/1-59259-399-2:69

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-140-0

  • Online ISBN: 978-1-59259-399-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics