Skip to main content

Adjuvant Formulations for Experimental Vaccines

  • Protocol
Vaccine Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 87))

Abstract

An adjuvant (immunopotentiator), when added to a vaccine, will enhance the immunogenicity of the antigen with the stimulation of an elevated humoral immune response. Some adjuvants may also stimulate a cell-mediated response against the antigen. One advantage of including an adjuvant in the vaccine mixture is that smaller quantities of the antigen are usually required to stimulate a good response. New synthetic experimental vaccines may require the presence of an adjuvant to achieve an immunogenic response. There is no single universal adjuvant, but numerous adjuvants are available alone (e.g., muramyl dipeptide and Quil A derivatives), or conjugated to the antigen (e.g., Immune-stimulating complexes [ISCOMs]), or in mixtures (e.g., Montanides, Guildhay or MF-59 adjuvants). The adjuvant selected will be based on experimental data produced with a variety of antigen preparations, taking into consideration the nature and dose to be administered, the route of vaccine administration, and any contraindications. For human vaccines, it should be remembered that aluminum salt adjuvants have been the only licensed preparations for the past sixty yr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jollès, P. and Paraf, A. (1973) Chemical and biological basis of adjuvants (Kleinzeller, A., Springer G. F., and Wittman, H. G., eds.) in Molecular Biology and Biophysics Springer, New York 13, 1–53.

    Google Scholar 

  2. Adam, A. (1985) Synthetic adjuvants in Modern Concepts in Immunology (Bona C., ed.). Wiley, Chichester, UK, 1, 1–239.

    Google Scholar 

  3. Stewart-Tull, D. E. S., ed. (1994) The Theory and Practical Application of Adjuvants. Wiley, Chichester and New York, pp. 1–380.

    Google Scholar 

  4. Vogel, F. R. and Powell, M. F. (1994) A compendium of vaccine adjuvants and excipients, in Vaccine Design (Powell, M. F. and Newman, M. J., eds.), Plenum, New York, pp. 141–229.

    Google Scholar 

  5. O’Hagan, D.T., ed. (2000) Vaccine Adjuvants: Preparation Methods and Research Protocols. Humana Press Inc., Totowa, NJ, pp. 1–342.

    Google Scholar 

  6. Stewart-Tull, D. E. S. (1988) Recommendations for the assessment of adjuvants (immunopotentiators), in Immunological Adjuvants and Vaccines, NATO ASI Series A: Life Sciences, vol. 179 (Gregoriadis, G., Allison, A. C., and Poste, G., eds.), Plenum, New York, pp. 213–226.

    Google Scholar 

  7. Lindblad, E. B. (1994) Aluminium adjuvants, in The Theory and Practical Application of Adjuvants (Stewart-Tull, D. E. S., ed.), Wiley, Chichester and New York, pp, 21–35.

    Google Scholar 

  8. Hem, S. L. and White, J. L. (1984) Characterization of aluminium hydroxide for use as an adjuvant in parenteral vaccines. J. Parenter. Sci. Technol. 38, 2–11.

    PubMed  CAS  Google Scholar 

  9. Weeke, B., Weeke, W., and Lowenstein, H. (1975) The adsorption of serum proteins to aluminium hydroxide gel examined by means of quantitative immuno-electrophoresis, in Quantitative Immuno-electrophoresis: New Developments and Applications (Axelsen, N. H., ed.), Universitetsforlaget, Denmark, pp. 149–154.

    Google Scholar 

  10. Seeber, S. J., White, J. L., and Hem, S. L. (1991) Predicting the adsorption of proteins by aluminium-containing adjuvants. Vaccine 9, 201–203.

    Article  PubMed  CAS  Google Scholar 

  11. Mosmann, T. R. and Sad, S. (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17, 138–146.

    Article  PubMed  CAS  Google Scholar 

  12. Cox, J.C., and Coulter, A.R. (1997) Adjuvants—a classification and review of their modes of action. Vaccine 15, 248–256.

    Article  PubMed  CAS  Google Scholar 

  13. Stewart-Tull, D. E. S. (1983) Immunologically important constituents of mycobacteria, in The Biology of the Mycobacteria vol. 2 (Ratledge, C. and Stanford, J., eds.), Academic Press, London, pp. 3–84.

    Google Scholar 

  14. Stewart-Tull, D. E. S. (1985) Immunopotentiating activity of peptidoglycan and surface polymers, in Immunology of the Bacterial Cell Envelope (Stewart-Tull, D. E. S. and Davies, M., eds.), Wiley, Chichester and New York, pp. 47–89.

    Google Scholar 

  15. Stewart-Tull, D. E. S., Shimono, T., Kotani, S., and Knights, B. A. (1976) Immunosuppressive effect in mycobacterial adjuvant emulsions of mineral oils containing low molecular weight hydrocarbons. Int. Arch. Allergy Appl. Immunol. 52, 118–128.

    Article  Google Scholar 

  16. Stewart-Tull, D. E. S. (2000) Harmful and Beneficial Activities of Immunological Adjuvants in Vaccine Adjuvants: Preparation Methods and Research Protocols (O’Hagan D. T., ed.), Humana Press, Totowa, NJ, pp. 29–48.

    Chapter  Google Scholar 

  17. Lindblad, E. B. (2000) Freund’s adjuvants in Vaccine Adjuvants: Preparation Methods and Research Protocols (O’Hagan D. T., ed.), Humana Press, Totowa, NJ, pp. 49–63.

    Chapter  Google Scholar 

  18. Leenaars, P. P. A. M., Hendriksen, C. F. M., de Leeuw, W. A., Carat, F., Delahaut, P., Fischer, R., et al. (1999) The production of polyclonal antibodies in laboratory animals. The Report and Recommendations of ECVAM/FELASA Workshop 35. ATLA 27, 70–102.

    Google Scholar 

  19. Lindblad, E. B. (2000) Escaping from the use of Freund’s complete adjuvant, in Progress in the Reduction, Refinement and Replacement of Animal Experimentation (Balls, M., van Zeller, A. M. and Halder, M. E., eds.), Elsevier, Amsterdam, pp. 1681–1685.

    Google Scholar 

  20. Turner, J. L., Trauger, R. J., Daigle, A. E., and Carlo, D. J. (1994) HIV-1 immunogen induction of HIV-1 specific delayed-type hypersensitivity: results of a double-blind, adjuvant-controlled dose-ranging trial. AIDS 8, 1429–1435.

    Article  PubMed  CAS  Google Scholar 

  21. Trauger, R. J., Giermakowska, W., Wormsley, S., Turner, J. L., Jensen, F. C., and Carlo, D. J. (1995) Autoproliferation in HIV-1 infected patients undergoing active HIV-1-specific immunotherapy. Clin. Exp. Immunol. 100, 7–12.

    Article  PubMed  CAS  Google Scholar 

  22. Gringeri, A., Santagostino, E., Muca-Perja, M., Mannucci, P. M., Zagury, J. F., Bizzini, B., et al. (1998) Safety and immunogenicity of HIV-1 Tat toxoid in immunocompromised HIV-1-infected patients. J. Hum. Virol. 1, 293–298.

    PubMed  CAS  Google Scholar 

  23. Gringeri, A., Musico, M., Hermans, P., Bentwich, Z., Cusini, M., Bergamasco, A., et al. (1999) Active anti-interferon-a immunisation: A European-Israeli, randomised, double-blind, placebo-controlled clinical trial in 242 HIV-infected patients (The Euris Study). J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 20, 358–370.

    PubMed  CAS  Google Scholar 

  24. Pinto, L. A., Berzofsky, J. A., Fowke, K. R., Little, R. F., Merced-Galindez, F., Humphrey, R., et al. (1999) HIV-specific immunity following immunization with HIV synthetic envelope peptides in asymptomatic HIV-1 infected patients. AIDS 22, 2003–2012.

    Article  Google Scholar 

  25. van Driel, W. J., Ressing, M. E., Kenter, G. G., Brandt, R. M., Krul, E. L., van Rossum, A. B., et al. (1999) Vaccination with HPV16 peptides of patients with advanced cervical carcinoma clinical evaluation of a Phase I-II trial. Eur. J. Cancer 35, 946–952.

    Article  PubMed  Google Scholar 

  26. Duarte Cano, C.A. (1999) The multi-epitope polypeptide approach in HIV-1 vaccine development. Genet. Anal: Biomol. Eng. 15, 149–153.

    Google Scholar 

  27. Picard, O., Achour, A., Bernard, J., Halbreich Bizzini, B., Boyer, V., Desgranges, C., et al. (1992) A 2-year follow up of an anti-HIV immune reaction in HIV-1 gp160 immunized healthy sero-negative humans, evidence for persistent cell-mediated immunity. J. Acquir. Immune Defic. Syndr. 5, 539–546.

    PubMed  CAS  Google Scholar 

  28. Gringeri, A., Santagostino, E., Mannucci, P. M., Tradati, F., Cultraro, D., Buzzi, A., et al.(1994) A randomised placebo-controlled blind anti-AIDS clinical trial. Safety and immunogenicity of a specific anti-IFNα immunization. J. Acquir. Immune Defic. Syndr. 7, 978–979.

    PubMed  CAS  Google Scholar 

  29. Rosenberg, S. A., Yang, J. C., Schwartzentruber, D. J., Hwu, P., Marincola, F. M., Topalian, S. L., et al. (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for a treatment of patients with metastatic melanoma. Nat. Med. 4, 321–327.

    Article  PubMed  CAS  Google Scholar 

  30. Yamshchikov, G. V., Barnd, D. L., Eastham, S., Galavotti, H., Patterson, J. W., Deacon, D. H., et al. (2001) Evaluation of peptide vaccine immunogenicity in draining lymph nodes and peripheral blood of melanoma patients. Int. J. Cancer 92, 703–711.

    Article  PubMed  CAS  Google Scholar 

  31. Lawrence G. W., Saul, A., Giddy, A. J., Kemp, R., and Pye, D. (1967) Phase I trial in humans of an oil-based adjuvant SEPPIC Montanide ISA 720. Vaccine 15, 176–178.

    Article  Google Scholar 

  32. Saul, A., Lawrence, G., Simillie, A., Rzepezyk, C., Reed, C., Taylor, D., et al. (1999) Human phase I vaccine trial of 3 recombinant asexual stage malaria antigens with Montanide ISA 720 adjuvant. Vaccine 17, 3145–3159.

    Article  PubMed  CAS  Google Scholar 

  33. Lawrence, G., Cheng, Q. Q., Reed, C., Taylor, S., Stowers, A., Cloonan, N., et al. (2000) Effect of vaccination with 3 recombinant asexual-stage malaria antigens on initial growth rates of Plasmodium falciparum in non-immune volunteers. Vaccine 17, 1925–1931.

    Article  Google Scholar 

  34. Genton, B., Al-Yaman, F., Anders, R., Saul, A., Brown, G. T., Rare, L., et al. (2000) Safety and immunogenicity of a three-component blood stage malaria vaccine in adults living in an endemic area of Papua New Guinea. Vaccine 22, 2504–2511.

    Article  Google Scholar 

  35. Iyer, A.V., Ghosh, S., Singh, S.N., and Deshmukh, R.A. (2000) Evaluation of three ‘ready to formulate’ oil adjuvants for foot and mouth disease vaccine production. Vaccine 19, 1097–1105.

    Article  PubMed  CAS  Google Scholar 

  36. McCluskie, M. J. and Davis, H. L. (1998) CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. J. Immunol. 161, 4463–4466.

    PubMed  CAS  Google Scholar 

  37. McCluskie, M. J., Weeratna, R. D., Payette, P. J., and Davis, H. L. The potential of CpG oligodeoxynucleotides as mucosal adjuvants. (2001) Crit. Rev. Immunol. 21, 103–120.

    Google Scholar 

  38. McCluskie, M. J. and Davis, H. L. (2000) Oral, intrarectal and intranasal immunizations using CpG and non-CpG oligodeoxynucleotides as adjuvants. Vaccine 19, 413–422.

    Article  PubMed  CAS  Google Scholar 

  39. McCluskie, M. J., Weeratna, R. D., Krieg, A. M., and Davis, H. L. (2000) CpG DNA is an effective oral adjuvant to protein antigens in mice. Vaccine 19, 950–957.

    Article  PubMed  CAS  Google Scholar 

  40. Manders, P. and Thomas, R. (2000) Immunology of DNA vaccines: CpG motifs and antigen presentation. Inflamm. Res. 49, 199–205.

    Article  PubMed  CAS  Google Scholar 

  41. Moss, R. B., Diveley, J., Jensen, F. C., Gouveia, E., Savary, J., and Carlo, D. J. (2000) HIV-specific CD4 (+) and CD8 (+) immune responses are generated with a gp-depleted, whole-killed HIV-1 immunogen with CpG immunostimulatory sequences of DNA. J. Interferon and Cytosine Res. 20, 1131–1137.

    Article  CAS  Google Scholar 

  42. Moss, R. B., Diveley, J., Jensen, F. C., Gouveia, E., and Carlo, D. J. (2001) Human immunodeficiency virus (HIV)-specific immune responses are generated with the simultaneous vaccination of a gp120-depleted, whole-killed HIV-1 immunogen with cytosinephosphorothioate-guanine dinucleotide immunostimulatory sequences of DNA. J. Hum. Virol. 4, 39–43.

    PubMed  CAS  Google Scholar 

  43. Leenaars, P. P. A. M., Koedam, M. A., Wester, P. W., Baumans, V., Claassen, E., and Hendriksen, C. F. M. (1998) Assessment of side-effects induced by injection of different adjuvant/antigen combinations in rabbits and mice. Lab. Anim. 32, 387–406

    Article  PubMed  CAS  Google Scholar 

  44. Tamura, S. I. and Kurata, (2000) A proposal for safety standards for human use of cholera toxin (or Escherichia coli heat-labile enterotoxin derivatives as an adjuvant of nasal inactivated influenza vaccine. Jpn. J. Inf. Dis. 53, 98–106.

    CAS  Google Scholar 

  45. Stewart-Tull, D. E. S. (1985) Immunopotentiating activity of peptidoglycan and surface polymers, in Immunology of the Bacterial Cell Envelope (Stewart-Tull, D. E. S. and Davies, M., eds.), Wiley, Chichester, UK, pp. 47–89.

    Google Scholar 

  46. Van Ginkel, F. W., Jackson, R. J., Yuki, Y., and McGhee, J. R. (2000) Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J. Immunol. 165, 4778–4782.

    PubMed  Google Scholar 

  47. Hagiwara, Y., Iwasaki, T., Asanuma, H., Sato, Y., Sata, T., Aizawa, C., et al. (2000) Effects of intranasal administration of cholera toxin (or Escherichia coli heat-labile toxin) B subunits supplemented with a trace amount of the holotoxin on the brain. Vaccine 19, 1652–1660.

    Article  Google Scholar 

  48. Stewart-Tull, D. E. S. (1996) The use of adjuvants in experimental vaccines IV ISCOMS, in Methods in Molecular Medicine: Vaccine Protocols (Robinson, A., Farrar, G. and Wiblin, C., eds.), Humana Press, Inc., Totowa, NJ, pp. 153–155.

    Chapter  Google Scholar 

  49. Rimmelzwaan, G. F., Nieuwkoop, N., Brandenburg, A., Sutter, G. Bayer, W. E., Maher, D., et al. (2000) A randomised double blind study in young healthy adults comparing cell-mediated and humoral immune responses induced by influenza ISCOM vaccines and conventional vaccines. Vaccine 19, 1180–1187.

    Article  PubMed  CAS  Google Scholar 

  50. Voeten, J. T., Rimmelzwaan, G. F., Nieuwkoop, N. J., Lövgren-Bengtsson, K., and Osterhaus, A. D. (2000) Introduction of the hemagglutinin transmembrane region in the influenza virus matrix protein facilitates its incorporation into ISCOM and activation of specific CD8 (+) cytotoxic T lymphocytes. Vaccine 19, 514–522.

    Article  PubMed  CAS  Google Scholar 

  51. Chopra, N., Biswas, S., Thomas, B., Sabhani, L., and Rao, D.N. (2000) Inducing protective antibodies against ring-infected erythrocyte surface peptide antigen of Plasmodium falciparum using immunostimulating complex (ISCOMs) delivery. Med. Microbiol. Immunol. 189, 75–83.

    Article  PubMed  CAS  Google Scholar 

  52. Lövgren-Bengtsson, K. and Morein, B. (2000) The ISCOM(tm) technology, in Vaccine Adjuvants: Preparation Methods and Research Protocols (O’Hagan, D. T., ed.), Humana Press, Totowa, NJ, pp. 239–258.

    Chapter  Google Scholar 

  53. Gregoriadis, G. (1988) Fate of injected liposomes: observations on entrapped solute retention, vesicle clearance and tissue distribution in vivo, in Liposomes as Drug Carriers: Recent Trends and Progress (Gregoriadis, G., ed.), Wiley, Chichester and New York, pp. 3–18.

    Google Scholar 

  54. van Rooijen, N. and Su, D. (1989) Immunoadjuvant action of liposomes: mechanisms, in Immunological Adjuvants and Vaccines (Gregoriadis, G., Allison, A. C. and Poste, G., eds.), Plenum, New York, pp. 95–106.

    Google Scholar 

  55. Stewart-Tull, D. E. S., Davies, M., and Jackson, D. M. (1978) The binding of adjuvant-active mycobacterial peptidoglycolipids and glycopeptides to mammalian membranes and their effect on artificial lipid bilayers. Immunology 34, 57–67.

    PubMed  CAS  Google Scholar 

  56. Davies, M., Stewart-Tull, D. E. S., and Jackson, D. M. (1978) The binding of lipopolysac-charide from Escherichia coli to mammalian cell membranes and its effect on liposomes. Biochim. Biophys. Acta 508, 260–276.

    Article  PubMed  CAS  Google Scholar 

  57. Stewart-Tull, D. E. S. (1996) The use of adjuvants in experimental vaccines III Liposomes, in Methods in Molecular Medicine: Vaccine Protocols (Robinson, A., Farrar, G. and Wiblin, C., eds.), Humana Press, Inc., Totowa, NJ, pp. 147–151.

    Chapter  Google Scholar 

  58. Gregoriadis, G., McCormack, B., Obrenovic, M., Perrie, Y., and Saffie, R (2000) Lipo-somes as immunological adjuvants and vaccine carriers, in Vaccine Adjuvants: Preparation Methods and Research Protocols (O’Hagan, D. T., ed.), Humana Press, Totowa, NJ, pp. 137–150.

    Chapter  Google Scholar 

  59. Loutan, L., Bovier, P., Althaus, B., and Gluck, R. (1994) Inactivated virosome hepatitis a vaccine. Lancet 343, 322–324.

    Article  PubMed  CAS  Google Scholar 

  60. Cusi, M. G., Zurbriggen, R., Valassina, M., Bianchi, S., Durrer, P., Valensin, P. E., et al. (2000) Intranasal immunization with mumps virus DNA vaccine delivered by influenza virosomes elicits mucosal and systemic immunity. Virology 277, 111–118.

    Article  PubMed  CAS  Google Scholar 

  61. ECPI World Vaccine Congress 1999. (2001) Collected papers. Vaccine 19, 1559–1615.

    Google Scholar 

  62. Jodar, L., Duclos, P., Milstein, J. B., Griffiths, E., Aguado, M. Y., and Clements, C. J. (2001) Ensuring vaccine safety in immunization programmes. Vaccine 19, 1594–1605.

    Article  PubMed  CAS  Google Scholar 

  63. Seibert, H., Balls, M., Fentem, J. H., Bianchi, V., Clothier, R. H., Dierickx, P. J., et al. (1996) Acute toxicity testing in vitro and the classification and labelling of chemicals. The Report and Recommendations of ECVAM Workshop 16. ATLA 24, 499–510.

    Google Scholar 

  64. Cooper, J. F. (2001) The bacterial endotoxins test: past, present and future. Eur. J. Parenteral Sci. 6, 89–93.

    Google Scholar 

  65. Falk, L. A. and Ball, L. K. (2001) Current status and future trends in vaccine regulation. Vaccine 19, 1567–1572.

    Article  PubMed  CAS  Google Scholar 

  66. Masterton, R. G. and Green, A. D. (1991) Dissemination of human pathogens by airline travel. J. Appl. Bacteriol. 70, 31S–38S.

    Google Scholar 

  67. Pangborn, M. C. (1951) A simplified purification of lecithin. J. Biol. Chem. 188, 471–476.

    PubMed  CAS  Google Scholar 

  68. Mancini, G., Carbonara, A. O., and Heremans, J. F. (1965) Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2, 235–255.

    Article  PubMed  CAS  Google Scholar 

  69. Stewart-Tull, D. E. S. (1991) The assessment and use of adjuvants, in Vaccines (Gregoriadis, G., Allison, A., and Poste, G., eds.), Plenum, New York, pp. 85–92.

    Google Scholar 

  70. Gregoriadis, G., Davis, D., and Davies, A. (1987) Liposomes as immunological adjuvants in vaccines: antigen incorporation studies. Vaccine 5, 145–151.

    Article  PubMed  CAS  Google Scholar 

  71. Gregoriadis, G., Tan, L., and Xiao, Q. (1989) The immunoadjuvant action of liposomes: role of structural characteristics, in Immunological Adjuvants and Vaccines (Gregoriadis, G., Allison, A. C., and Poste, G., eds.), Plenum, New York, pp. 79–94.

    Google Scholar 

  72. Stewart-Tull, D. E. S., and Rowe, R. E. C. (1975) Procedures for large-scale antiserum production in sheep. J. Immunol. Methods 8, 37–46.

    Article  PubMed  CAS  Google Scholar 

  73. Stewart-Tull, D. E. S. and Jones, A. C. (1992) Adjuvanted vaccines should not induce allergic responses to dietary antigens. FEMS Microbiol. Lett. 100, 489–496.

    CAS  Google Scholar 

  74. Tamura, S. I. and Kurata, T. (2000) A proposal for safety standards for human use of cholera toxin (or Escherichia coli heat-labile enterotoxin) derivatives as an adjuvant of nasal inactivated influenza vaccine. Jap. J. Inf. Dis. 53, 98–106.

    CAS  Google Scholar 

  75. Stones, P. B. (1979) Self injection of veterinary oil-emulsion vaccines. Br. Med. J. I, 1627.

    Article  Google Scholar 

  76. Davenport, F. M., Hennessy, A. V., Houser, H. B., and Cryns W. F. (1956) Evaluation of adjuvant influenza virus vaccine tested against influenza B, 1954–1955. Am. J. Hyg. 64, 304–313.

    PubMed  Google Scholar 

  77. Davenport, F. M. and Hennessy, A. V. (1956) Serologic recapitulation of past experiences with influenza A: antibody response to monovalent vaccine. J. Exp. Med. 104, 85–97.

    Article  PubMed  CAS  Google Scholar 

  78. Davenport, F. M. (1968) Seventeen years experience with mineral oil adjuvant influenza virus vaccines. Ann. Allergy 26, 288–292.

    PubMed  CAS  Google Scholar 

  79. Salk, J. E., Contakos, A.B., and Laurent, A.M. (1953) Use of adjuvants in studies on influenza immunization III Degree of persistence of antibody in human subjects two years after vaccination. JAMA 151, 1169–1175.

    Google Scholar 

  80. Bell, J. A., Philip, R. N., Davis, D. J., Beem, M. O., Beigelman, P. M., Engler, J. I., et al. (1961) Epidemiologic studies on influenza in familial and general populations, 1951–1956: IV vaccine reactions. Am. J. Hyg. 73, 148–163.

    Google Scholar 

  81. Medical Research Council (1955) Report of the Committee on Clinical Trials of Influenza Vaccine. Br. Med. J. 2, 1229–1232.

    Article  Google Scholar 

  82. Heggie, A. D., Crawford, Y. E., and Miller, L. F. (1960) Failure to demonstrate increased hypersensitivity to egg protein after immunization with an influenza vaccine of the oil-adjuvanted type. N. Engl. J. Med. 263, 959–962.

    Article  PubMed  CAS  Google Scholar 

  83. Himmelweit, F. (1960) Serological responses and clinical reactions to influenza virus vaccines. Br. Med. J. 2, 1690–1694.

    Article  PubMed  CAS  Google Scholar 

  84. Medical Research Council (1964) Clinical trials of oil-adjuvant influenza vaccines 1960–63. Report of the Medical Research Council by its Committee on Influenza and other respiratory virus vaccines. Br. Med. J. i, 267–271.

    Google Scholar 

  85. Meiklejohn, G. (1960) Observations on live influenza vaccine. J. Am. Med. Assn. 172, 1354–1356.

    Google Scholar 

  86. Seal, J. R. (1955) Reactions to influenza vaccine. US Armed Forces Med. J. 6, 1559–1563.

    CAS  Google Scholar 

  87. Salk, J. and Salk, D. (1977) Control of influenza and poliomyelitis with killed virus vaccines. Science 195, 834–847

    Article  PubMed  CAS  Google Scholar 

  88. Cutler, J. C., Lesesne, L., and Vaughn, I. (1960) Use of poliomyelitis virus vaccine in light mineral oil adjuvant in a community immunization program and report of reactions encountered. J. Allergy 33, 193–209.

    Article  Google Scholar 

  89. Snyder, J. C., Bell, S. D., and Murray E. S. (1966) Reactions among infants immunized intramuscularly with typhoid vaccine in adjuvant. J. Bacteriol. 91, 902

    PubMed  CAS  Google Scholar 

  90. MacLennan, R., Schofield, F. D., Pittmann, M., Hardegree, M. C., and Barile, M. F. (1965) Immunization against neonatal tetanus in New Guinea: antitoxin response of pregnant women to adjuvant and plain toxoids. Bull. WHO 32, 683–697

    PubMed  CAS  Google Scholar 

  91. Ogonuki, H., Hashizume, S., and Abe, H (1967) Histopathological tests of tissues in the sites of local reactions caused by the injection of oil-adjuvant cholera vaccine: international symposium on adjuvants of immunity. Symp. Ser. Immunobiol. Stand. 6, Karger, New York, pp. 125–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Stewart-Tull, D.E.S. (2003). Adjuvant Formulations for Experimental Vaccines. In: Robinson, A., Hudson, M.J., Cranage, M.P. (eds) Vaccine Protocols. Methods in Molecular Medicine™, vol 87. Humana Press. https://doi.org/10.1385/1-59259-399-2:175

Download citation

  • DOI: https://doi.org/10.1385/1-59259-399-2:175

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-140-0

  • Online ISBN: 978-1-59259-399-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics