Skip to main content

PCR Technology and Applications to Zoonotic Food-Borne Bacterial Pathogens

  • Protocol
PCR Detection of Microbial Pathogens

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 216))

Abstract

Among molecular biological methods targeting nucleic acids, the polymerase chain reaction (PCR) has become the most popular diagnostic method in human and veterinary medicine, as well as in microbiological food testing (1,2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D’Aoust, J.-Y. (1994) Salmonella and the international food trade. Int. J. Food Microbiol. 24, 11–31.

    CAS  Google Scholar 

  2. Hill, W. E., and Keasler, S. P. (1991) Identification of food borne pathogens by nucleic acid hybridization. Int. J. Food Microbiol. 12, 67–76.

    PubMed  CAS  Google Scholar 

  3. Saiki, R. K., Scharf, S. J, Faloona, F. A., et al. (1985) Enzymatic amplification of (3-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.

    PubMed  CAS  Google Scholar 

  4. Mullis, K.B. and Faloona, F.A. (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335–351.

    PubMed  CAS  Google Scholar 

  5. Saiki, R. K., Gelfand, D. H., Stoffel, S., et al. (1988) Primer-directed enzy-matic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    PubMed  CAS  Google Scholar 

  6. Swaminathan, B., and Feng, P. (1994) Rapid detection of food-borne pathogenic bacteria. Ann. Rev. Microbiol. 48, 401–426.

    CAS  Google Scholar 

  7. Scheu, P. M., Berghof, K., and Stahl, U. (1998). Detection of pathogenic and spoilage micro-organisms in food with the polymerase chain reaction. Food Microbiol. 15, 13–31.

    Google Scholar 

  8. Easter, M. C. (1985) Rapid and automated detection of Salmonella by electrical measurements. J. Hyg. Camb. 94, 245–262.

    PubMed  CAS  Google Scholar 

  9. Ibrahim, G. F., and Fleet, G.,H. (1985) Detection of salmonellae using acceler-ated methods. Int. J. Food Microbiol. 2, 259–272.

    Google Scholar 

  10. Beumer, R. R., Brinkman, E., and Rombouts, F. M. (1991) Enzyme-linked immunoassays for the detection of Salmonella spp.: a comparison with other methods. Int. J. Food Microbiol. 12, 363–374.

    PubMed  CAS  Google Scholar 

  11. Ellison, A., Perry, S.F. and Stewart, G.S.A.B. (1991) Bioluminescence as areal-time monitor of injury and recovery in Salmonella typhimurium. Int. J. Food Microbiol. 12, 323–332.

    PubMed  CAS  Google Scholar 

  12. Blackburn, C. de W. (1993) Rapid and alternative methods for the detection of salmonellas. J. Appl. Bacteriol. 75, 199–214.

    PubMed  CAS  Google Scholar 

  13. Hanai, K., Satake, M., Naakanishi, H., and Venkateswaran, K. (1997) Compari-son of commercially available kits for detection of Salmonella strains in foods. Appl. Environ. Microbiol. 63, 775–778.

    PubMed  CAS  Google Scholar 

  14. Vaneechoutte, M. and Van Eldere, J. (1997) The possibilities and limitations of nucleic acid amplification technology in diagnostic microbiology. J. Med. Microbiol. 46, 188–194.

    PubMed  CAS  Google Scholar 

  15. Olsen, J. E., Aabo, S., Hill, W., et al. (1995) Probes and polymerase chain reac-tion for detection of food-borne bacterial pathogens. Int. J. Food Microbiol. 28, 1–78.

    PubMed  CAS  Google Scholar 

  16. Hoorfar, J., Ahrens, P., and Rådström, P. (2000) Automated 5′ nuclease PCR assay for identification of Salmonella enterica. J. Clin. Microbiol. 38, 3429–3435.

    PubMed  CAS  Google Scholar 

  17. Kuhnert, P., Boerlin, P. and Frey, J. (2000) Target genes for virulence assess-ment of Escherichia coli isolates from water, food and the environment. FEMS Microbiol. Rev. 24, 107–117.

    PubMed  CAS  Google Scholar 

  18. Gyles, C.L. (1992) Escherichia coli cytotoxins and enterotoxins. Can. J. Microbiol. 38, 734–746.

    PubMed  CAS  Google Scholar 

  19. Newland, J. W., and Neil, R J. (1988) DNA probes for shiga-like toxins I and II and for toxin converting bacteriophages. J. Clin. Microbiol. 26, 1292–1297.

    PubMed  CAS  Google Scholar 

  20. Ojeniyi, B., Ahrens, P., and Meyling, A. (1994) Detection of fimbrial and toxin genes in Escherichia coli and their prevalence in piglets with diarrhoea. The application of colony hybridization assay, polymerase chain reaction and pheno-typic assays. Zentralbl. Veterinarmed 41, 49–59.

    CAS  Google Scholar 

  21. On, S. L. W. (1997) Identification methods for Campylobacter, Helicobacters, and related organisms. Clin. Microbiol. Rev. 9, 405–422.

    Google Scholar 

  22. Goossens, H., and Butzler, J. P. ( 1992) Isolation and identification of Cam-pylobacter spp., in Campylobacter jejuni. Current status and future trends. (Nachamkin, I., Blaser, M.J., Tompkins, L.S., eds.), ASM Press, Washington DC, USA, pp. 93–109.

    Google Scholar 

  23. Romaniuk, P. J., and Trust, T.J. (1987) Rapid identification of Campylobacter species using oligonucleotide probes to 16S ribosomal RNA. Mol. Cell. Probes. 3, 133–142.

    Google Scholar 

  24. Eyers, M., Chapeeli, S., van Gamp, G., Goosens, H., and DeWachter, R. (1993) Discrimination among thermophilic Campylobacter species by polymerase chain reaction amplification of 23s rRNA gene fragments. J. Clin. Microbiol. 31, 3340–3343.

    PubMed  CAS  Google Scholar 

  25. Lübeck, P. S., On, S. L. W., and Hoorfar, J. (2001) Development of a PCR detec-tion method for Campylobacter jejuni, C. coli and C. lari in foods. Int. J. Med. Microbiol. 291, 110.

    Google Scholar 

  26. Pedersen, K. B. (1979) Occurrence of Yersinia enterocolitica in the throat of swine. Contr. Microbiol. Immunol. 5, 253–256.

    CAS  Google Scholar 

  27. Nesbakken, T., and Kapperud, G. (1985) Yersinia enterocolitica and Yersinia enterocolitica-like bacteria in Norwegian slaughter pigs. Int. J. Food Microbiol. 1, 301–309.

    Google Scholar 

  28. Hoorfar, J. and Holmvig, C.B.F. (1999) Evaluation of culture methods for rapid screening of swine faecal samples for Yersinia enterocolitica O:3 / biotype 4. Vet. Med. B 46, 189–198.

    CAS  Google Scholar 

  29. Kapperud, G., Dommersnes, K., Skurnik, M., and Hornes, E. (1990) A synthetic oligonucleotide probe and a cloned polynucleotide probe based on the yopA gene for detection and enumeration of virulent Yersinia enter ocolitica. Appl. Environ. Microbiol. 56, 17–23.

    PubMed  CAS  Google Scholar 

  30. Wren, B. W., and Tabaqchali, S. (1990) Detection of pathogenic Yersinia enter ocolitica by the polymerase chain reaction. Lancet 336, 693.

    PubMed  CAS  Google Scholar 

  31. Fenwick, S. G., and Murray, A. (1990) Detection of pathogenic Yersinia enter ocolitica by polymerase chain reaction. Lancet 337, 496–497.

    Google Scholar 

  32. Rasmussen, H. N., Rasmussen, O. F., Christensen, H., and Olsen, J.E. (1995) Detection of Yersinia enter ocolitica O:3 in faecal samples and tonsil swabs from pigs using IMS and PCR. J. Appl. Bacteriol. 78, 563–568.

    PubMed  CAS  Google Scholar 

  33. Kapperud, G., Vardund, T., Skjerve, E., Hornes, E., and Michaelsen, T. E. (1993) Detection of pathogenic Yersinia enterocolitica in foods and water by immunomagnetic separation, nested polymerase chain reactions, and colorimet-ric detection of amplified DNA. Appl. Environ. Microbiol. 59, 2938–2944.

    PubMed  CAS  Google Scholar 

  34. Lambertz, S. T., Ballagi-Pordány, A., Nilsson, A., Norberg, P., and Tham, M. L. M. (1996) A comparison between PCR method and a conventional culture method for detecting pathogenic Yersinia enterocolitica in food. J. Appl. Bacteriol. 81, 303–308.

    Google Scholar 

  35. Gelling, B. G., and Broome C.V. (1989) Listeriosis. JAMA 261, 1313–1320.

    Google Scholar 

  36. Vazquez-Bolan, J. A., Kuhn, M., Berche, P., Chakraborty, T., DomÍnguez-Bernal, G., Goebel, W., Gonzalez-Zorn, B., Wehland, J., and Kreft, J. (2001) Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584–640.

    Google Scholar 

  37. Graham, T., Golsteyn-Thomas, E. J., Gannon, V. P., and Thomas, J. E. (1996) Genus-and species-specific detection of Listeria monocytogenes using poly-merase chain reaction assays targeting the 16S/23S intergenic spacer region of the rRNA operon. Can. J. Microbiol. 42, 1155–1162.

    PubMed  CAS  Google Scholar 

  38. Ericsson, H. and Stalhandske, P. (1997) PCR detection of Listeria monocytogenes in’ gravad’ rainbow trout. Int. J. Food Microbiol. 35, 281–285.

    PubMed  CAS  Google Scholar 

  39. Manzano, M., Cocolin, L., Cantoni, C., and Comi, G. (1997) Detection and iden-tification of Listeria monocytogenes from milk and cheese by a single-step PCR. Mol. Biotech. 7, 85–88.

    CAS  Google Scholar 

  40. Wolcott, M. J. (1992) Advances in nucleic acid-based detection methods. Clin. Microbiol. Rev. 5, 370–386.

    PubMed  CAS  Google Scholar 

  41. Gingeras, T. R., Dichman, D. D., Kwoth, D. Y., and Guatelli, J. C. (1990) Meth-odologies for in vitro nucleic acid amplification and their application. Vet. Microbiol. 24, 235–251.

    PubMed  CAS  Google Scholar 

  42. Taylor, G. R. ( 1991) Polymerase chain reaction: basic principles and automa-tion, in PCR-A practical approach (McPherson, M. J., Quirke, P., and Taylor, G. R., eds.), Oxford University Press, Oxford, UK, pp. 1–14.

    Google Scholar 

  43. Mitchell, T. G., Freedman, E. Z., White, T. J., and Taylor, J. W. (1994) Unique oligonucleotide primers in PCR for identification of Cryptococcus neoformans. J. Clin. Microbiol. 32, 253–255.

    PubMed  CAS  Google Scholar 

  44. Henson, J. M., and French, R. (1993) The polymerase chain reaction and plant disease diagnosis. Ann. Rev. Phytopathol. 31, 81–109.

    CAS  Google Scholar 

  45. Ward, E. ( 1994) Use of the polymerase chain reaction for identifying plant patho-gens, in Ecology of Plant Pathology (Blakeman, J. P., and Williamsen, B. eds.), CAB International, USA, 143–160.

    Google Scholar 

  46. Abu Al-Soud, W. A., and Rådström, P. (1998) Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhib-iting samples. Appl. Environ. Microbiol. 64, 3748–3753.

    PubMed  CAS  Google Scholar 

  47. Kreader, C.A. (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl. Environ. Microbiol. 62, 1102–1106.

    PubMed  CAS  Google Scholar 

  48. Saiki, R. K. ( 1989) The Design and optimization of the PCR, (Erlich, H. A., ed.), Stockton Press, New York, NY, USA, pp 7–16.

    Google Scholar 

  49. Ward, E. (1995) Improved polymerase chain reaction (PCR) detection of Gaumannomyces graminis including a safeguard against false negatives. Euro-pean J. Plant Pathol. 101, 561–566.

    CAS  Google Scholar 

  50. Suggs, S. V., Wallace, R. B., Hirose, T., Kawashima, E. H., and Itakura, K. (1981) Use of synthetic oligonucleotides as hybridization probes: isolation of cloned cDNA sequences for human beta 2-microglobulin. Proc. Natl. Acad. Sci. USA 78, 6613–6617.

    PubMed  CAS  Google Scholar 

  51. Schaad, N. W., Cheong, S. S., Tamaki, S., Hatziloukas, N. J. and Panopoulos, N. J. (1995) A combined biological and enzymatic amplification (BIO-PCR) tech-nique to detect Pseudomonas syringae pv. phaseolicola in bean seed extracts. Phytopathology 85, 243–248.

    CAS  Google Scholar 

  52. Innis, M. A. and Gelfand, D. H. ( 1990) Optimization of PCRs, in PCR Protocols. A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T J., eds.), Academic Press, San Diego, CA, USA, pp. 3–12.

    Google Scholar 

  53. Steffan, R. J. and Atlas, R. M. (1988) DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl. Environ. Microbiol. 54, 2185–2191.

    PubMed  CAS  Google Scholar 

  54. McManus, P. S., and Jones, A. L. (1995) Detection of Erwinia amylovora by nested PCR and PCR-dot-blot and reverse-blot hybridizations. Phytopathology 85, 618–623.

    CAS  Google Scholar 

  55. Lübeck, M., and Lübeck, P.S. ( 1996) PCR-a promising tool for detection and identification of fungi in soil, in Developments in Plant Pathology: Monitoring Antagonistic Fungi Deliberately Released into the Environment (Jensen, D. F., Jansson, H.-B., and Tronsmo, A., eds.), Kluwer Academic Publishers, Norwell, MA, USA, pp. 113–122.

    Google Scholar 

  56. Zolg, J.W., and Philippi-Schulz, S. (1994) The superoxide dismutase gene, a target for detection and identification of mycobacteria by PCR. J. Clin. Microbiol. 32, 2801–2812.

    PubMed  CAS  Google Scholar 

  57. Bulat, S. A., Lübeck, M., Alekhina, I. A., Knudsen, I. M. B., Jensen, D. F. and Lübeck, P. S. (2000) Identification of an UP-PCR derived SCAR marker for an antagonistic strain of Clonostachys rosea and development of a strain-specific PCR detection assay. Appl. Environ. Microbiol. 66, 4758–4763.

    PubMed  CAS  Google Scholar 

  58. Louws, F. J., Fulbright, D. W., Stephens, C. T., and de Bruijn, F.J. (1995) Differ-entiation of genomic structure by rep-PCR fingerprinting to rapidly classify Xanthomonas campestrispv. vesicatoria. Phytopathology 85, 528–536.

    CAS  Google Scholar 

  59. Meyer, W., Mitchell, T. G., Freedman, E. Z. and Vilgalys, R. (1993) Hybridiza-tion probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J. Clin. Microbiol 31, 2274–2280.

    PubMed  CAS  Google Scholar 

  60. Edel, V., Steinberg, C., Avelange, I., Laguerre, G., and Alabouvette, C. (1995) Comparison of three molecular methods for the characterization of Fusarium oxysporum strains. Phytopathology 85, 579–585.

    CAS  Google Scholar 

  61. Doolittle, R. F. (1990) Molecular evolution: computer analysis of protein and nucleic acid sequences, Methods Enzymol. 183

    Google Scholar 

  62. Wheeler, W. C. ( 1994) Sources of ambiguity in nucleic acid sequence align-ment, in Molecular Ecology and Evolution: Approaches and Applications (Schierwater, B., Streit, B., Wagner, G. P., and DeSalle, R., eds.), Birkhäuser Verlag, Basel, pp. 323–352.

    Google Scholar 

  63. McPherson, M. J., Jones, K. M., and Gurr, S. J. ( 1994) PCR with highly degen-erate primers, in PCR-A Practical Approach (McPherson, M. J., Quirke, P., and Taylor, G. R., eds.), The Practical Approach Series Vol. 1, Oxford University Press, UK, pp. 171–186.

    Google Scholar 

  64. Lübeck, P. S., Paulin, L., Degefu, Y., Lübeck, M., Alekhina, I. A., Bulat, S. A., and Collinge, D. B. (1997) PCR cloning, DNA sequencing and phylogenetic analysis of a xylanase gene from the phytopathogenic fungus Ascochyta pisi Lib. Physiol. Mol. Plant Pathol. 51, 377–389.

    Google Scholar 

  65. Bej, A. K., McCarty, S. C., and Atlas, R. M. (1991) Detection of coliform bacte-ria and Escherichia coli by multiplex polymerase chain reaction: comparison with defined substrate and plating methods for water quality monitoring. Appl. Environ. Microbiol. 57, 2429–2432.

    PubMed  CAS  Google Scholar 

  66. Steffan, R. J., and Atlas, R. M. (1991) Polymerase chain reaction: applications in environmental microbiology. Ann. Rev. Microbiol. 45, 137–162.

    CAS  Google Scholar 

  67. Lee Lang, A., Tsai, Y.-L., Mayer, C. L., Patton, K. C. and Palmer, C. J. (1994) Multiplex PCR for detection of the heat-labile toxin gene and Shiga-like toxin I and II genes in Escherichia coli isolated from natural waters. Appl. Environ. Microbiol. 60, 3145–3149.

    Google Scholar 

  68. Geha, D. J., Uhl, J. R., Gustaferro, C. A., and Persing, D. H. (1994) Multiplex PCR for identification of methicillin-resistant Staphylococci in the clinical labo-ratory. J. Clin. Microbiol. 32, 1768–1772.

    PubMed  CAS  Google Scholar 

  69. Liébana, E., Aranaz, A., Mateos, A., et al. (1995) Simple and rapid detection of Mycobacterium tuberculosis complex organisms in bovine tissue samples by PCR. J. Clin. Microbiol. 33, 33–36.

    PubMed  Google Scholar 

  70. Lawrence, L. M., and Gilmour, A. (1994) Incidence of Listeria spp. and List-eria monocytogenes in a poultry processing environment and in poultry prod-ucts and their rapid confirmation by multiplex PCR. Appl. Environ. Microbiol. 60, 4600–4604.

    PubMed  CAS  Google Scholar 

  71. Tsushima, S., Hasebe, A., Komoto, Y., et al. (1995) Detection of genetically engineered microorganisms in paddy soil using a simple and rapid &quote;nested&quote; poly-merase chain reaction method. Soil Biol. Biochem. 27, 219–227.

    CAS  Google Scholar 

  72. Rådström, P., Bäckman, A., Qian, N., Kragsbjerg, P., Påhlson, C., and Olcén, P. (1994) Detection of bacterial DNA in cerebrospinal fluid by an assay for simul-taneous detection of Neisseria meningitidis, Haemophilus influenzae, and strep-tococci using a seminested PCR strategy. J. Clin. Microbiol. 32, 2738–2744.

    PubMed  Google Scholar 

  73. Straub, T.M., Pepper, I.L., Abbaszadegan, M. and Gerba, C.P. (1994) A method to detect enteroviruses in sewage sludge-amended soil using the PCR. Appl. Environ. Microbiol. 60, 1014–1017.

    PubMed  CAS  Google Scholar 

  74. Catalan, V., Moreno, C., Dasi, M.A., Munoz, C. and Apraiz, D. (1994) Nested polymerase chain reaction for detection of Legionella pneumophila in water. Res. Microbiol. 145, 603–610.

    PubMed  CAS  Google Scholar 

  75. Gilliland, G., Perrin, S., and Bunn, H. ( 1990) Competitive PCR for quantitation of mRNA, in PCR Protocols. A Guide to Methods and Applications, (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T.J., eds.), Academic Press, San Diego, CA, USA, pp. 60–69.

    Google Scholar 

  76. Robinson, D. J. (1992) Detection of tobacco rattle virus by reverse transcription and polymerase chain reaction. J. Virol. Methods 40, 57–66.

    PubMed  CAS  Google Scholar 

  77. Tsai, Y.-L., Tran, B., Sangermano, L. R., and Palmer, C. J. (1994) Detection of poliovirus, hepatitis A virus, and rotavirus from sewage and ocean water by tri-plex reverse transcriptase PCR. Appl. Environ. Microbiol. 60, 2400–2407.

    PubMed  CAS  Google Scholar 

  78. Gilgen, M., Wegmüller, B., Burkhalter, P., et al. (1995) Reverse transcription PCR to detect enteroviruses in surface water. Appl. Environ. Microbiol. 61, 1226–1231.

    PubMed  CAS  Google Scholar 

  79. Bej, A. K., and Mahbubani, M.H. (1992) Applications of the polymerase chain reaction in environmental microbiology. PCR Methods Applications 1, 151–159.

    CAS  Google Scholar 

  80. Arai, M., Mizukoshi, C., Kubochi, F., Kakutani, T., and Wataya, Y. (1994) De-tection of Plasmodiumfalciparum in human blood by a nested polymerase reac-tion. Am. J. Trop. Med. Hyg. 51, 617–626.

    PubMed  CAS  Google Scholar 

  81. Schraft, H., and Griffiths, M.W. (1995) Specific oligonucleotide primers for de-tection of lecithinase-positive Bacillus spp. by PCR. Appl. Environ. Microbiol. 61, 98–102.

    PubMed  CAS  Google Scholar 

  82. Anderson, B. ( 1998) Identifying noval bacteria using a broad-range polymerase chain reaction, in Rapid Detection of Infectious Agents (Specter, S., Bendinelli, M., and Friedman, H., eds.), Plenum Press, New York and London, pp. 117–129.

    Google Scholar 

  83. de Bruijn, F. J. (1992) Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergenic consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 58, 2180–2187.

    PubMed  Google Scholar 

  84. Fischer, S. G., and Lerman, L. S. (1983) DNA fragments differing by single basepair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80, 1579–1583.

    PubMed  CAS  Google Scholar 

  85. Liu, W.-T., Marsh, L. T., Cheng, H., and Forney, L. J. (1997) Characterization of microbial diversity by determining terminal restriction fragment length poly-morphisms of genes encoding 16S rRNA. App. Environ Microbiol. 63, 4516–4522.

    CAS  Google Scholar 

  86. Moyer, C. L., Dobbs, F. C., and Karl, D. M. (1994) Estimation of diversity and community structure through restriction fragment length polymorphism distri-bution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 60, 871–879.

    PubMed  CAS  Google Scholar 

  87. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531–6535.

    PubMed  CAS  Google Scholar 

  88. Vos, P., Hogers, R., Bleeker, M., et al. (1995) AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414

    PubMed  CAS  Google Scholar 

  89. Welsh, J., and McClelland, M. (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213–7218.

    PubMed  CAS  Google Scholar 

  90. Bulat, S. A., and Mironenko, N.V. (1990) Species identity of the phytopatho-genic fungi Pyrenophora teres Dreschler and P. graminea Ito and Kuribayashi. Mikol. Fitopatol. 24, 435–441. (In Russian)

    Google Scholar 

  91. Bulat, S. A., Lübec, M., Mironenko, N. V., Jensen, D. F., and Lübeck, P.S. (1998) UP-PCR analysis and ITS1 ribotyping of Trichoderma and Gliocladium fungi. My col. Res. 102, 933–943.

    CAS  Google Scholar 

  92. Lübeck, M., Alekhina, I. A., Lübeck, P. S., Jensen, D.F., and Bulat, S. A. (1999) Delineation of Trichoderma harzianum Rifai into two different genotypic groups by a highly robust fingerprinting method, UP-PCR, and UP-PCR product cross-hybridisation. My col. Res. 103, 289–298.

    Google Scholar 

  93. Lübeck, M., and Poulsen, H. (2001) UP-PCR and UP-PCR cross blot hybridiza-tion as a tool for studying anastomosis group relationship in the Rhizoctonia solani complex. FEMS Microbiol. Lett. 201, 83–89.

    PubMed  Google Scholar 

  94. Wilson, I.G. (1997) Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63, 3741–3751.

    PubMed  CAS  Google Scholar 

  95. Wernars, K,. Heuvelman, C. J., Chakraborty, T., and Notermans S. H. W. (1991) Use of the polymerase chain reaction for direct detection of Listeria monocytogenes in soft cheese. J. Appl. Bacteriol. 70, 121–126.

    PubMed  CAS  Google Scholar 

  96. Greenfield, L., and White, T. J. ( 1993) Sample preparation methods, in Diagnos-tic Molecular Microbiology (Persing, D. H., Smith, T. F., Tenover, F. C., and White, T. J. eds.), ASM Press, Washington DC, USA.

    Google Scholar 

  97. Rossen, L., Nørskov, P., Holmstrøm, K., and Rasmussen, O. F. (1992) Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA extraction solutions. Int. J. Food Microbiol. 15, 37–45.

    Google Scholar 

  98. Lantz, P.G., Hahn-Hägerdal, B., and Rådström, P. (1994) Sample preparation methods in PCR-based detection of food pathogens. Trends Food Sci. Technol. 5, 384–389.

    CAS  Google Scholar 

  99. Lantz, P. G., Matsson, M., Wadström, T., and Rådström, P. (1997) Removal of PCR inhibitors from human fecal samples through the use of an aqueous two-phase sys-tem for sample preparation prior to PCR. J. Microbiol. Methods 28, 159–167.

    CAS  Google Scholar 

  100. Lantz, P. G., Knutsson, R., Blixt, Y., Abu Al-Soud, W., Borch, E, and Rådström P. (1998) Detection of pathogenic Yersinia enterocolitica in enrichment media and pork by a multiplex PCR: a study of sample preparation and PCR-inhibitory components. Int. J. Food Microbiol. 45, 93–105.

    PubMed  CAS  Google Scholar 

  101. Dragon, E. A., Spadoro, J. P., and Madej R. ( 1993) Quality control of polymerase chain reaction. in Diagnostic Molecular Microbiology, (Persing, D. H., Smith, T. F., Tenover, F. C,. and White, T.J. eds.), ASM Press, Washington DC, USA.

    Google Scholar 

  102. Kitchin, P. A., and Bootman, J.S. (1993) Quality assurance of the polymerase chain reaction. Med. Virol. 3, 107–114.

    CAS  Google Scholar 

  103. Ivinson, A. J., and Taylor, G. R. ( 1991) PCR in genetic diagnosis, in PCR-A Practical Approach, (McPherson, M. J., Quirke, P., and Taylor, G. R. eds.), Oxford University Press, USA, pp 15–27.

    Google Scholar 

  104. Longo, M., Berninger, M. S., and Hartley, J.L. (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reaction. Gene 93, 125–128.

    PubMed  CAS  Google Scholar 

  105. Cimino, G. D., Metchette, K. C., Tessman, J. W., Hearst, J. E., and Isaacs, S. T. (1991) Post-PCR sterilization: a method to control carryover contamination for the polymerase chain reaction. Nucleic Acids Res. 19, 99–107.

    PubMed  CAS  Google Scholar 

  106. Picard, C., Ponsonnet, C., Paget, E., Nesme, X., and Simonet, P. (1992) Detec-tion and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl. Environ. Microbiol. 58, 2717–2722.

    PubMed  CAS  Google Scholar 

  107. Moukhamedov, R., Hu, X., Nazar, N. and Robb, J. (1994) Use of polymerase chain reaction-amplified ribosomal intergenic sequences for the diagnosis of Ver-ticillium tricorpus. Phytopathology 84, 256–259.

    CAS  Google Scholar 

  108. Degrange, V., and Bardin, R. (1995) Detection and counting of Nitrobacter popu-lations in soil by PCR. Appl. Environ. Microbiol. 61, 2093–2098.

    PubMed  CAS  Google Scholar 

  109. Lamar, R. T., Schoenike, B., Vanden Wymelenberg, A., Stewart, P., Dietrich, D. M., and Cullen, D. (1995) Quantitation of fungal mRNAs in complex substrates by reverse transcription PCR and its application to Phanerochaete chrysosporium-colonized soil. Appl. Environ. Microbiol. 61, 2122–2126.

    PubMed  CAS  Google Scholar 

  110. Ferre, F. (1992) Quantitative or semi-quantitative PCR: reality versus myth. PCR Methods Applications 2, 1–9.

    CAS  Google Scholar 

  111. Besnard, N. C., and Andre, P. M. (1994) Automated quantitative determination of hepatitis C virus viremia by reverse transcription-PCR. J. Clinical. Microbiol. 32, 1887–1893.

    CAS  Google Scholar 

  112. Merzouki, A., Mo, T., Vellani, N., et al. (1994) Accurate and differential quanti-fication of HIV-1 tat, rev and nef mRNAs by competitive PCR. J. Virol. Meth-ods 50, 115–128.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Stephensen Lübeck, P., Hoorfar, J. (2003). PCR Technology and Applications to Zoonotic Food-Borne Bacterial Pathogens. In: Sachse, K., Frey, J. (eds) PCR Detection of Microbial Pathogens. Methods in Molecular Biology™, vol 216. Humana Press. https://doi.org/10.1385/1-59259-344-5:65

Download citation

  • DOI: https://doi.org/10.1385/1-59259-344-5:65

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-049-6

  • Online ISBN: 978-1-59259-344-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics