Skip to main content

Detection of Toxigenic Clostridia

  • Protocol
PCR Detection of Microbial Pathogens

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 216))

Abstract

Clostridia are anaerobic spore-forming bacteria that are widespread in the environment. They produce many extracellular hydrolytic enzymes and are especially involved in the decomposition of carcasses and plants in natural conditions. Some species produce potent toxins and are pathogenic for man and animals. Clostridia do not invade healthy cells nor multiply within them. They are able to enter host organisms by two ways, the oral route and wounds, but their proliferation in the intestinal content or in wounds requires the presence of risk factors. Thus, incomplete or nonfunctional digestive microflora in newborns, perturbation of the digestive microflora by antibiotics, overfeeding, intestinal stasis, or malignancy of the intestinal wall represent common factors permitting clostridial growth. Deep wounds forming a small hole on the outside and harboring necrotic tissues enable their implantation in connective and muscular tissues. Toxins as the main virulence factors are responsible for all symptoms and lesions observed in clostridial diseases. Consequently, toxins are the main target for diagnosis of clostridial diseases, as well as the basis for efficient vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Szabo, E. A., Pemberton, J. M., and Desmarchelier P. M. (1992) Specific detection of Clostridium botulinum type B by using the polymerase chain reaction. Appl. Environ. Microbiol. 58, 418–420.

    PubMed  CAS  Google Scholar 

  2. Szabo, E. A., Pemberton, J. M., and Desmarchellier, P. M. (1993) Detection of the genes encoding botulinum neurotoxin types A to E by the polymerase chain reaction. Appl. Environ. Microbiol. 59, 3011–3020.

    PubMed  CAS  Google Scholar 

  3. Szabo, E. A., Pemberton, J. M., Gibson, A. M., Eyles, M. J., and Desmarchellier P. M. (1994) Polymerase chain reaction for detection of Clostridium botulinum types A, B and E in food, soil and infant faeces. J. Appl. Bacteriol. 76, 539–545.

    PubMed  CAS  Google Scholar 

  4. Franciosa, G., Ferreira, J. L., and Hatheway C. L. (1994) Detection of type A, B, and E botulism neurotoxin genes in Clostridium botulinum and other Clostridium species by PCR: evidence of unexpressed type B toxin genes in type A toxigenic organisms. J. Clin. Microbiol. 32, 1911–1917.

    PubMed  CAS  Google Scholar 

  5. Takeshi, K., Fujinaga, Y., Inoue, K., et al. (1996) Simple method for detection of Clostridium botulinum type A to F neurotoxin genes by polymerase chain reaction. Microbiol. Immunol. 40, 5–11.

    PubMed  CAS  Google Scholar 

  6. Ferreira, J. L., Baumstark, B. R., Hamdy, M. K., and McCay, S. G. (1993) Polymerase chain reaction for detection of type A Clostridium botulinum in food samples. J. Food Prot. 56, 18–20.

    CAS  Google Scholar 

  7. Hielm, S., Hyyttia, E., Ridell, J., and Korkeala, H. (1996) Detection of Clostridium botulinum in fish and envionmental samples using polymerase chain reaction. Int. J. Food Microbiol. 31, 357–365.

    Article  PubMed  CAS  Google Scholar 

  8. Ferreira, J. L., Hamdy, M. K., McGay, S. G., Hemphill, M., Kirma, N., and Baumstark, B. R. (1994) Detection of Clostridium botulinum type F using the polymerase chain reaction. Mol. Cel. Probes 8, 365–373.

    Article  CAS  Google Scholar 

  9. Kakinuma, H., Maruyama, H., Yamakawa, K., Nakamura, S., and Takahashi, H. (1997) Application of nested polymerase chain reaction for the rapid diagnosis of infant botulism type B. Acta Paed. Jap. 39, 346–348.

    CAS  Google Scholar 

  10. Cordoba, J. J., Collins, M. D., and East, A. K. (1995) Studies on the genes encoding botulinum neurotoxin type A of Clostridium botulinum from a variety of sources. System. Appl. Microbiol. 18, 13–22.

    CAS  Google Scholar 

  11. Campbell, K. D., Collins, M. D., and East, A. K. (1993) Gene probes for identification of the botulinal neurotoxin gene and specific identification of neurotoxin types B, E and F. J. Clin. Microbiol. 31, 2255–2262.

    PubMed  CAS  Google Scholar 

  12. Aranda, E., Rodriguez, M. M., Asensio, M. A., and Cordoba, J. J. (1997) Detection of Clostridium botulinum types A, B, E, and F in foods by PCR and DNA probe. Lett. Appl. Microbiol. 25, 186–190.

    Article  PubMed  CAS  Google Scholar 

  13. Broda, D. M., Boerema, J. A., and Bell, R. G. (1998) A PCR survey of psychrotophic Clostridium botulinum-like isolates for the presence of BoNT genes. Let. Appl. Microbiol. 27, 219–223.

    Article  CAS  Google Scholar 

  14. Fach, P., Gibert, M., Grifais, R., Guillou, J. P., and Popoff, M. R. (1995) PCR and gene probe identification of botulinum neurotoxin A-, B-, E-, F-, and G-producing Clostridium spp. and evaluation in food samples. Appl. Environ. Microbiol. 61, 389–392.

    PubMed  CAS  Google Scholar 

  15. Fach, P., Gibert, M., Griffais, R., and Popoff, M. R. (1996) Investigation of animal botulism outbreaks by PCR and standard methods. FEMS Immunol. Med. Microbiol. 13, 279–285.

    Article  PubMed  CAS  Google Scholar 

  16. Petit, L., Gibert, M., and Popoff, M. R. (1999) Clostridium perfringens: toxinotype and genotype. Trends Microbiol. 7, 104–110.

    Article  PubMed  CAS  Google Scholar 

  17. Daube, G., China, B., Simon, P., Hvala, K., and Mainil, J. (1994) Typing of Clostridium perfringens by in vitro amplification of toxin genes. J. Appl. Bacteriol. 77, 650–655.

    PubMed  CAS  Google Scholar 

  18. Moller, K., and Ahrens, P. (1996) Comparison of toxicity neutralization-, ELISA, and PCR tests for typing of Clostridium perfringens and detection of the enterotoxin gene by PCR. Anaerobe 2, 103–110.

    Article  Google Scholar 

  19. Yamagishi, T., Sugitani, K., Tanishima, K., and Nakamura, S. (1997) Polymerase chain reaction test for differentiation of five toxin types of Clostridium perfringens. Microbiol. Immunol. 41, 295–299.

    PubMed  CAS  Google Scholar 

  20. Fach, P., and Popoff, M. R. (1997) Detection of enterotoxigenic Clostridium perfringens in food and fecal samples with a duplex PCR and the slide agglutination test. Appl. Environ. Microbiol. 63, 4232–4236.

    PubMed  CAS  Google Scholar 

  21. Songer, J. G., and Meer, R. R. (1996) Genotyping of Clostridium perfringens by polymerase chain reaction is a useful adjunct to diagnosis of clostridial enteric disease in animals. Anaerobe 2, 197–203.

    Article  CAS  Google Scholar 

  22. Schoepe H., Potschka, H., Schlapp, T., Fiedler, J., Schau, H., and Baljer G. (1998) Controlled multiplex PCR of enterotoxigenic Clostridium perfringens strains in food samples. Mol. Cell. Probes 12, 359–365.

    Article  PubMed  CAS  Google Scholar 

  23. Yoo, H. S., Lee, S. U., Park, K. Y., and Park, Y. H. (1997) Molecular typing and epidemiological survey of prevalence of Clostridium perfringens types by multiplex PCR. J. Clin. Microbiol. 35, 228–232.

    PubMed  CAS  Google Scholar 

  24. Kanakaraj, R., Harris, D. L., Songer, J. G., and Bosworth, B. (1998) Multiplex PCR assay for detection of Clostridium perfringens in feces and intestinal contents of pigs and in swine feed. Vet. Microbiol. 63, 29–38.

    Article  PubMed  CAS  Google Scholar 

  25. Miserez, R., Frey, J., Buogo, C., Capaul, S., Tontis, A., Burnens, A., and Nicolet, J. (1998) Detection of α-and ε-toxigenic Clostridium perfringens typeD in sheep and goats using a DNA amplification technique (PCR). Lett. Appl. Microbiol. 26, 382–386.

    Article  PubMed  CAS  Google Scholar 

  26. Kadra, B., Guillou, J. P., Popoff, M. R., and Bourlioux, P. (1999) Typing of sheep clinical isolates and identification of enterotoxigenic Clostridium perfringens strains by classical methods and polymerase chain reaction (PCR). FEMS Immunol. Med. Microbiol. 24, 259–266.

    PubMed  CAS  Google Scholar 

  27. Garmory, H. S., Chanter, N., French, N. P., Bueschel, D., Songer, J. G., and Titball, R. W. (2000) Occurence of Clostridium perfringens β2-toxin amongst animals, determined using genotyping and subtyping PCR assays. Epidemiol. Infect. 124, 61–67.

    Article  PubMed  CAS  Google Scholar 

  28. Gkiourtzidis, K., Frey, J., Bourtzi-Hatzopoulou, E., Iliadis, N., and Sarris, K. (2001) PDR detection and prevalence of α-, β-,β2-,ε-, ι-, and enterotoxin genes in Clostridium perfringens isolated from lambs with clostridial dysentery. Vet. Microbiol. 82, 39–43.

    Article  PubMed  CAS  Google Scholar 

  29. Kunert, P., Krampe, M., Capaul, S. E., Frey, J., and Nicolet, J. (1997) Identification of Clostridium chauvoei in cultures and clinical material from blacleg using PCR. Vet. Microbiol. 51, 291–298.

    Article  Google Scholar 

  30. Kunert, P., Capaul, S. E., Nicolet, J., and Frey, J. (1996) Phylogenetic positions of Clostridium chauvoei and Clostridium septicum based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 46, 1174–1176.

    Article  Google Scholar 

  31. Fach, P., Gibert, M., Grifais, R., Guillou, J. P., and Popoff, M. R. (1995) PCR and gene probe identification of botulinum neurotoxin A-, B-, E-, F-, and G-producing Clostridium spp. and evaluation in food samples. Appl. Environ. Microbiol. 61, 389–392.

    PubMed  CAS  Google Scholar 

  32. Kemp, D. J., Smith, D. B., Foote, S. J., Samaras, N., and Peterson, M. G. (1989) Colorimetric detection of specific DNA segments amplified by polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86, 2423–2427.

    Article  PubMed  CAS  Google Scholar 

  33. Kimura, B., Kawasaki, S., Nakano, H., and Hujii, T. (2001) Rapid, quantitative PCR monitoring of growth of Clostridium botulinum type E in modified-atmo-sphere-packaged fish. Appl. Environ. Microbiol. 67, 206–218.

    Article  PubMed  CAS  Google Scholar 

  34. Hutson, R. A., Zhou, Y., Collins, M. D., Johnson, E. A., Hatheway, C. L., and Sugiyama, H. (1996) Genetic characterization of Clostridium botulinum type A containing silent type B neurotoxin gene sequences. J. Biol. Chem. 271, 10,786–10,792.

    Article  PubMed  CAS  Google Scholar 

  35. Wieckowski, E., Billington, S., Songer, G., and McClane, B. (1998) Clostridium perfringens type E isolates associated with veterinary enteric infections carry silent enterotoxin gene sequences. Zbl. Bakteriol. S29, 407–408.

    Google Scholar 

  36. McGrath, S., Dooley, J. S. G., and Haylor, R. W. (2000) Quantification of Clostridium botulinum toxin gene expression by competitive reverse trasncription PCR. Appl. Environ. Microbiol. 66, 1423–1428.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Popoff, M.R. (2003). Detection of Toxigenic Clostridia. In: Sachse, K., Frey, J. (eds) PCR Detection of Microbial Pathogens. Methods in Molecular Biology™, vol 216. Humana Press. https://doi.org/10.1385/1-59259-344-5:137

Download citation

  • DOI: https://doi.org/10.1385/1-59259-344-5:137

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-049-6

  • Online ISBN: 978-1-59259-344-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics