Skip to main content

Engineering Chloroplasts for High-Level Foreign Protein Expression

  • Protocol
  • First Online:
Chloroplast Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1132))

Abstract

Expression of transgenes from the plastid genome offers a number of attractions to biotechnologists, with the potential to attain very high protein accumulation levels arguably being the most attractive one. High-level transgene expression is of particular importance in resistance engineering (e.g., via expression of insecticidal proteins) and molecular farming. Over the past years, the production of many commercially valuable proteins in chloroplast-transgenic (transplastomic) plants has been attempted, including pharmaceutical proteins (such as subunit vaccines and protein antibiotics) and industrial enzymes. Although, in some cases, spectacularly high foreign protein accumulation levels have been obtained, expression levels were disappointingly poor in other cases. In this review, I summarize our current knowledge about the factors influencing the efficiency of plastid transgene expression and highlight possible optimization strategies to alleviate problems with poor expression levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  CAS  PubMed  Google Scholar 

  2. Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

    Article  CAS  PubMed  Google Scholar 

  4. Koop H-U, Herz S, Golds TJ, Nickelsen J (2007) The genetic transformation of plastids. Top Curr Genet 19:457–510

    Article  CAS  Google Scholar 

  5. Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci U S A 104:6998–7002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc Natl Acad Sci U S A 104:7003–7008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 1:1071–1079

    Article  CAS  PubMed  Google Scholar 

  8. Bock R, Warzecha H (2010) Solar-powered factories for new vaccines and antibiotics. Trends Biotechnol 28:246–252

    Article  CAS  PubMed  Google Scholar 

  9. McCabe MS, Klaas M, Gonzalez-Rabade N, Poage M, Badillo-Corona JA, Zhou F, Karcher D, Bock R, Gray JC, Dix PJ (2008) Plastid transformation of high-biomass tobacco variety Maryland Mammoth for production of human immunodeficiency virus type 1 (HIV-1) p24 antigen. Plant Biotechnol J 6:914–929

    Article  CAS  PubMed  Google Scholar 

  10. Herz S, Füßl M, Steiger S, Koop H-U (2005) Development of novel types of plastid transformation vectors and evaluation of factors controlling expression. Transgenic Res 14:969–982

    Article  CAS  PubMed  Google Scholar 

  11. Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers A-MI, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of HIV antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 6:897–913

    Article  CAS  PubMed  Google Scholar 

  12. Birch-Machin I, Newell CA, Hibberd JM, Gray JC (2004) Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability. Plant Biotechnol J 2:261–270

    Article  CAS  PubMed  Google Scholar 

  13. Liere K, Börner T (2007) Transcription and transcriptional regulation in plastids. Top Curr Genet 19:121–174

    Article  CAS  Google Scholar 

  14. Filée J, Forterre P (2005) Viral proteins functioning in organelles: a cryptic origin? Trends Microbiol 13:510–513

    Article  PubMed  Google Scholar 

  15. Hajdukiewicz PTJ, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. De Cosa B, Moar W, Lee S-B, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  PubMed  Google Scholar 

  17. Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg J, van Wijk KJ, Dougan G, Maliga P (2003) Expression of tetanus toxin fragment C in tobacco chloroplasts. Nucleic Acids Res 31:1174–1179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445

    Article  CAS  PubMed  Google Scholar 

  19. Newell CA, Birch-Machin I, Hibberd JM, Gray JC (2003) Expression of green fluorescent protein from bacterial and plastid promoters in tobacco chloroplasts. Transgenic Res 12:631–634

    Article  CAS  PubMed  Google Scholar 

  20. Bohne A-V, Ruf S, Börner T, Bock R (2007) Faithful transcription initiation from a mitochondrial promoter in transgenic plastids. Nucleic Acids Res 35:7256–7266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Eberhard S, Drapier D, Wollman F-A (2002) Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J 31:149–160

    Article  CAS  PubMed  Google Scholar 

  22. Kahlau S, Bock R (2008) Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell 20:856–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Staub JM, Maliga P (1994) Translation of the psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J 6:547–553

    Article  CAS  PubMed  Google Scholar 

  24. Ye G-N, Hajdukiewicz PTJ, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270

    Article  CAS  PubMed  Google Scholar 

  25. Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop H-U (1999) In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19:333–345

    Article  CAS  PubMed  Google Scholar 

  26. Kuroda H, Maliga P (2001) Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Res 29:970–975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Drechsel O, Bock R (2011) Selection of Shine-Dalgarno sequences in plastids. Nucleic Acids Res 39:1427–1438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Valkov VT, Gargano D, Manna C, Formisano G, Dix PJ, Gray JC, Scotti N, Cardi T (2011) High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5′ and 3′ regulatory sequences. Transgenic Res 20:137–151

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Ruf S, Hasse C, Childs L, Scharff LB, Bock R (2012) Identification of cis-elements conferring high levels of gene expression in non-green plastids. Plant J 72:115–128

    Article  CAS  PubMed  Google Scholar 

  30. Caroca R, Howell KA, Hasse C, Ruf S, Bock R (2012) Design of chimeric expression elements that confer high-level gene activity in chromoplasts. Plant J 73:368–379

    Article  PubMed  Google Scholar 

  31. Stern DB, Goldschmidt-Clermont M, Hanson MR (2010) Chloroplast RNA metabolism. Annu Rev Plant Biol 61:125–155

    Article  CAS  PubMed  Google Scholar 

  32. Tangphatsornruang S, Birch-Machin I, Newell CA, Gray JC (2011) The effect of different 3′ untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. Plant Mol Biol 76:385–396

    Article  CAS  PubMed  Google Scholar 

  33. Hall MN, Gabay J, Debarbouille M, Schwartz M (1982) A role for mRNA secondary structure in the control of translation initiation. Nature 295:616–618

    Article  CAS  PubMed  Google Scholar 

  34. Neupert J, Karcher D, Bock R (2008) Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli. Nucleic Acids Res 36:e124

    Article  PubMed Central  PubMed  Google Scholar 

  35. Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Verhounig A, Karcher D, Bock R (2010) Inducible gene expression from the plastid genome by a synthetic riboswitch. Proc Natl Acad Sci U S A 107:6204–6209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hayes R, Kudla J, Schuster G, Gabay L, Maliga P, Gruissem W (1996) Chloroplast mRNA 3′-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J 15:1132–1141

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhou F, Karcher D, Bock R (2007) Identification of a plastid Intercistronic Expression Element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons. Plant J 52:961–972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Walter M, Piepenburg K, Schöttler MA, Petersen K, Kahlau S, Tiller N, Drechsel O, Weingartner M, Kudla J, Bock R (2010) Knockout of the plastid RNase E leads to defective RNA processing and chloroplast ribosome deficiency. Plant J 64:851–863

    Article  CAS  PubMed  Google Scholar 

  40. Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    Article  CAS  PubMed  Google Scholar 

  41. Oey M, Lohse M, Scharff LB, Kreikemeyer B, Bock R (2009) Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins. Proc Natl Acad Sci U S A 106:6579–6584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kuroda H, Maliga P (2001) Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol 125:430–436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lenzi P, Scotti N, Alagna F, Tornesello ML, Pompa A, Vitale A, De Stradis A, Monti L, Grillo S, Buonaguro FM, Maliga P, Cardi T (2008) Translational fusion of chloroplast-expressed human papillomavirus type 16L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res 17:1091–1102

    Article  CAS  PubMed  Google Scholar 

  44. Gray BN, Ahner BA, Hanson MR (2009) High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnol Bioeng 102:1045–1054

    Article  CAS  PubMed  Google Scholar 

  45. Apel W, Schulze WX, Bock R (2010) Identification of protein stability determinants in chloroplasts. Plant J 63:636–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Bellucci M, de Marchis F, Mannucci R, Bock R, Arcioni S (2005) Cytoplasm and chloroplasts are not suitable subcellular locations for ß-zein accumulation in transgenic plants. J Exp Bot 56:1205–1212

    Article  CAS  PubMed  Google Scholar 

  47. Adam Z (2007) Protein stability and degradation in plastids. Top Curr Genet 19:315–338

    Article  CAS  Google Scholar 

  48. Sakamoto W (2006) Protein degradation machineries in plastids. Annu Rev Plant Biol 57:599–621

    Article  CAS  PubMed  Google Scholar 

  49. Staub JM, Garcia B, Graves J, Hajdukiewicz PTJ, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    Article  CAS  PubMed  Google Scholar 

  50. Bally J, Paget E, Droux M, Job C, Job D, Dubald M (2008) Both the stroma and thylakoid lumen of tobacco chloroplasts are competent for the formation of disulphide bonds in recombinant proteins. Plant Biotechnol J 6:46–61

    CAS  PubMed  Google Scholar 

  51. Glenz K, Bouchon B, Stehle T, Wallich R, Simon MM, Warzecha H (2006) Production of a recombinant bacterial lipoprotein in higher plant chloroplasts. Nat Biotechnol 24:76–77

    Article  CAS  PubMed  Google Scholar 

  52. Hennig A, Bonfig K, Roitsch T, Warzecha H (2007) Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis. FEBS J 274:5749–5758

    Article  CAS  PubMed  Google Scholar 

  53. Albus C, Ruf S, Schöttler MA, Lein W, Kehr J, Bock R (2010) Y3IP1, a nucleus-encoded thylakoid protein, co-operates with the plastid-encoded Ycf3 protein in photosystem I assembly. Plant Cell 22:2838–2855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kirchhoff H, Haferkamp S, Allen JF, Epstein DBA, Mullineaux CW (2008) Protein diffusion and macromolecular crowding in thylakoid membranes. Plant Physiol 146:1571–1578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Kirchhoff H (2008) Molecular crowding and order in photosynthetic membranes. Trends Plant Sci 13:201–207

    Article  CAS  PubMed  Google Scholar 

  56. Tissot G, Canard H, Nadai M, Martone A, Botterman J, Dubald M (2008) Translocation of aprotinin, a therapeutic protease inhibitor, into the thylakoid lumen of genetically engineered tobacco chloroplasts. Plant Biotechnol J 6:309–320

    Article  CAS  PubMed  Google Scholar 

  57. Hirose T, Sugiura M (1997) Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J 16:6804–6811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Staub JM, Maliga P (1995) Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J 7:845–848

    Article  CAS  PubMed  Google Scholar 

  59. Quesada-Vargas T, Ruiz ON, Daniell H (2005) Characterization of heterologous multigene operons in transgenic chloroplasts. Transcription, processing, and translation. Plant Physiol 138:1746–1762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci U S A 110:E623–E632

    Article  PubMed Central  PubMed  Google Scholar 

  61. Magee AM, Coyne S, Murphy D, Horvath EM, Medgyesy P, Kavanagh TA (2004) T7 RNA polymerase-directed expression of an antibody fragment transgene in plastids causes a semi-lethal pale-green seedling phenotype. Transgenic Res 13:325–337

    Article  CAS  PubMed  Google Scholar 

  62. Petersen K, Bock R (2011) High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol Biol 76:311–321

    Article  CAS  PubMed  Google Scholar 

  63. Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  CAS  PubMed  Google Scholar 

  64. Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Rogalski M, Karcher D, Bock R (2008) Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 15:192–198

    Article  CAS  PubMed  Google Scholar 

  66. Rogalski M, Schöttler MA, Thiele W, Schulze WX, Bock R (2008) Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell 20:2221–2237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Gray BN, Ahner BA, Hanson MR (2009) Extensive homologous recombination between introduced and native regulatory plastid DNA elements in transplastomic plants. Transgenic Res 18:559–572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work on plastid transformation in the author’s laboratory is supported by grants from the European Union (FP7), the Bundesministerium für Bildung und Forschung (BMBF), the Deutsche Forschungsgemeinschaft (DFG), and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bock, R. (2014). Engineering Chloroplasts for High-Level Foreign Protein Expression. In: Maliga, P. (eds) Chloroplast Biotechnology. Methods in Molecular Biology, vol 1132. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-995-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-995-6_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-994-9

  • Online ISBN: 978-1-62703-995-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics