Skip to main content

The Quantitative Real-Time Polymerase Chain Reaction for the Analysis of Plant Gene Expression

  • Protocol
  • First Online:
Cereal Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1099))

Abstract

The quantitative real-time polymerase chain reaction is used to simultaneously amplify and quantify a targeted DNA molecule. It can be used to determine exact copy number of a molecule within a sample and/or to compare the quantity of a molecule between samples. When combined with reverse transcription, it is a powerful tool for the analysis of gene expression, and it is widely used for this purpose in plant species. Here we provide an introduction to fundamental concepts relevant for the analysis of gene expression in plants using this technique and a protocol for quantification of the relative expression of a sucrose phosphate synthase gene along the maturation gradient of a sugarcane leaf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. VanGuilder H, Vrana K, Freeman W (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44:619–626

    Article  PubMed  CAS  Google Scholar 

  2. Higuchi R, Dollinger G, Walsh P et al (1992) Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10: 413–417

    Article  PubMed  CAS  Google Scholar 

  3. Rasmussen R, Morrison T, Herrmann M et al (1998) Quantitative PCR by continuous fluorescence monitoring of a double strand DNA specific binding dye. Biochemica 2:8–11

    Google Scholar 

  4. Eischeid A (2011) SYTO dyes and EvaGreen outperform SYBR Green in real-time PCR. BMC Res Notes 4:263

    Article  PubMed  Google Scholar 

  5. Livak K, Flood S, Marmaro J (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. Genome Res 4: 357–362

    Article  CAS  Google Scholar 

  6. Wittwer C, Ririe K, Andrew R et al (1997) The LightCycler™: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques 22:176–181

    PubMed  CAS  Google Scholar 

  7. Nazarenko I, Lowe B, Darfler M et al (2002) Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Res 30:e37

    Article  PubMed  Google Scholar 

  8. Giancola S, Mckhann H, Bérard A et al (2006) Utilization of the three high-throughput SNP genotyping methods, the GOOD assay, Amplifluor and TaqMan, in diploid and polyploid plants. Theor Appl Genet 112:1115–1124

    Article  PubMed  CAS  Google Scholar 

  9. Gallinella G, Bonvicini F, Filippone C et al (2004) Calibrated real-time PCR for evaluation of Parvovirus B19 viral load. Clin Chem 50:759–762

    Article  PubMed  CAS  Google Scholar 

  10. Bernard P, Wittwer C (2002) Real-time PCR technology for cancer diagnostics. Clin Chem 48:1178–1185

    PubMed  CAS  Google Scholar 

  11. Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50: 227–230

    Article  PubMed  CAS  Google Scholar 

  12. Bustin S, Nolan T (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 15:155–166

    PubMed  Google Scholar 

  13. Bustin S, Benes V, Garson J et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  14. Udvardi M, Czechowski T, Scheible W-R (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737

    Article  PubMed  CAS  Google Scholar 

  15. Rieu I, Powers S (2009) Real-time quantitative RT-PCR: design, calculations, and statistics. Plant Cell 21:1031–1033

    Article  PubMed  CAS  Google Scholar 

  16. Reymond P, Weber H, Damond M et al (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719

    PubMed  CAS  Google Scholar 

  17. Mcclung C (2006) Plant circadian rhythms. Plant Cell 18:792–803

    Article  PubMed  CAS  Google Scholar 

  18. Li Y, Breaker R (1999) Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2’-hydroxyl group. J Am Chem Soc 121:5364–5372

    Article  CAS  Google Scholar 

  19. Fleige S, Pfaffl M (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139

    Article  PubMed  CAS  Google Scholar 

  20. Probst J, Brechtel S, Scheel B (2006) Characterization of the ribonuclease activity on the skin surface. Genet Vaccines Ther 4:4

    Article  PubMed  Google Scholar 

  21. Gilman M (2002) Preparation of cytoplasmic RNA from tissue culture cells, Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  22. Oshima Y, Fujimura A (2003) Analysis of 3’/5’ ratio of actin and Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH). Genome Informatics 14:472–473

    Google Scholar 

  23. Tavares L, Alves P, Ferreira R et al (2011) Comparison of different methods for DNA-free RNA isolation from SK-N-MC neuroblastoma. BMC Res Notes 4:3

    PubMed  CAS  Google Scholar 

  24. Aslanzadeh J (2004) Preventing PCR amplification carryover contamination in a clinical laboratory. Ann Clin Lab Sci 34:389–396

    PubMed  CAS  Google Scholar 

  25. Ståhlberg A, Kubista M, Pfaffl M (2004) Comparison of reverse transcriptases in gene expression analysis. Clin Chem 50:1678–1680

    Article  PubMed  Google Scholar 

  26. Hellemans J, Mortier G, De Paepe A et al (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed  Google Scholar 

  27. Butte A, Dzau V, Glueck S (2001) Further defining housekeeping, or “maintenance”, genes—focus on “A compendium of gene expression in normal human tissues”. Physiol Genomics 7:95–96

    PubMed  CAS  Google Scholar 

  28. Radonić A, Thulke S, Mackay I et al (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862

    Article  PubMed  Google Scholar 

  29. Jain M, Nijhawan A, Tyagi A et al (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  PubMed  CAS  Google Scholar 

  30. Nicot N, Hausman J-F, Hoffmann L et al (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56: 2907–2914

    Article  PubMed  CAS  Google Scholar 

  31. Czechowski T, Stitt M, Altmann T et al (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139: 5–17

    Article  PubMed  CAS  Google Scholar 

  32. Løvdal T, Lillo C (2009) Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem 387:238–242

    Article  PubMed  Google Scholar 

  33. Li Q-F, Sun S, Yuan D-Y et al (2010) Validation of candidate reference genes for the accurate normalization of real-time quantitative RT-PCR data in rice during seed development. Plant Mol Biol Rep 28:49–57

    Article  Google Scholar 

  34. Gutierrez L, Mauriat M, Pelloux J (2008) Towards a systematic validation of references in real-time RT-PCR. Plant Cell 20:1734–1735

    Article  PubMed  CAS  Google Scholar 

  35. Vandesompelem J, De Preterm K, Pattynm F et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034

    Google Scholar 

  36. Pfaffl M (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  37. Whelan J, Russell N, Whelan M (2003) A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods 278:261–269

    Article  PubMed  CAS  Google Scholar 

  38. Lu Y, Xie L, Chen J (2012) A novel procedure for absolute real-time quantification of gene expression patterns. Plant Methods 8:9

    Article  PubMed  CAS  Google Scholar 

  39. Gunson R, Bennett S, Maclean A et al (2008) Using multiplex real time PCR in order to streamline a routine diagnostic service. J Clin Virol 43:372–375

    Article  PubMed  CAS  Google Scholar 

  40. Ramakers C, Ruijter J, Deprez R et al (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  41. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  42. Baker M (2012) Digital PCR hits its stride. Nat Methods 9:541–544

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the Australian Research Council and the Grains Research and Development Corporation for Funding and Dr Rosanne Casu (CSIRO Plant Industry, Australia) for critical reading.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fitzgerald, T.L., McQualter, R.B. (2014). The Quantitative Real-Time Polymerase Chain Reaction for the Analysis of Plant Gene Expression. In: Henry, R., Furtado, A. (eds) Cereal Genomics. Methods in Molecular Biology, vol 1099. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-715-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-715-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-714-3

  • Online ISBN: 978-1-62703-715-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics