Skip to main content

DNA Labeling In Vivo: Quantification of Epidermal Stem Cell Chromatin Content in Whole Mouse Hair Follicles Using Fiji Image Processing Software

  • Protocol
  • First Online:
Functional Analysis of DNA and Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1094))

Abstract

DNA labeling in vivo using nucleoside analogues is a current experimental approach to determine cell proliferation rates in cell cultures and tissues. It has also been successfully used to localize adult stem cell niches through the identification of nucleoside label-retaining cells (LRC) in long-term experiments. A major hindrance of this methodology relies on the selection of adequate procedures to quantify the nucleoside analogue content from image data files. Here we propose a simple procedure using Fiji image processing software to accurately calculate nucleoside analogue retaining chromatin/total chromatin (LRC/DAPI) signal ratios in the well-known mouse hair follicle stem cell niche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zink D, Cremer T (1998) Cell nucleus: chromosome dynamics in nuclei of living cells. Curr Biol 8:R321–324

    Article  PubMed  CAS  Google Scholar 

  2. Bradford GB, Williams B, Rossi R et al (1997) Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 25:445–453

    PubMed  CAS  Google Scholar 

  3. Cheshier SH, Morrison SJ, Liao X et al (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci U S A 96:3120–3125

    Article  PubMed  CAS  Google Scholar 

  4. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337

    Article  PubMed  CAS  Google Scholar 

  5. Mackenzie IC, Bickenbach JR (1985) Label-retaining keratinocytes and Langerhans cells in mouse epithelia. Cell Tissue Res 242:551–556

    Article  PubMed  CAS  Google Scholar 

  6. Taylor G, Lehrer MS, Jensen PJ et al (2000) Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102:451–461

    Article  PubMed  CAS  Google Scholar 

  7. Pietrzyk ME, Priestley GV, Wolf NS (1985) Normal cycling patterns of hematopoietic stem cell subpopulations: an assay using long-term in vivo BrdU infusion. Blood 66:1460–1462

    PubMed  CAS  Google Scholar 

  8. Morris RJ, Potten CS (1994) Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif 27:279–289

    Article  PubMed  CAS  Google Scholar 

  9. Braun KM, Niemann C, Jensen UB et al (2003) Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in whole mounts of mouse epidermis. Development 130:5241–5255

    Article  PubMed  CAS  Google Scholar 

  10. Fakan S (1976) High-resolution autoradiography as a tool for the localization of nucleic acid synthesis and distribution in the mammalian cell nucleus. J Microsc 106:159–171

    Article  PubMed  CAS  Google Scholar 

  11. Gratzner HG (1982) Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218:474–475

    Article  PubMed  CAS  Google Scholar 

  12. Tuttle AH, Rankin MM, Teta M et al (2010) Immunofluorescent detection of two thymidine analogues (CldU and IdU) in primary tissue. J Vis Exp e2166

    Google Scholar 

  13. Dolbeare F, Gray JW (1988) Use of restriction endonucleases and exonuclease III to expose halogenated pyrimidines for immunochemical staining. Cytometry 9:631–635

    Article  PubMed  CAS  Google Scholar 

  14. Taupin P (2007) BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev 53:198–214

    Article  PubMed  CAS  Google Scholar 

  15. Ashman CR, Davidson RL (1981) Bromodeoxyuridine mutagenesis in mammalian cells is related to deoxyribonucleotide pool imbalance. Mol Cell Biol 1:254–260

    PubMed  CAS  Google Scholar 

  16. Matsuoka K, Nomura K, Hoshino T (1990) Mutagenic effects of brief exposure to bromodeoxyuridine on mouse FM3A cells. Cell Tissue Kinet 23:495–503

    PubMed  CAS  Google Scholar 

  17. Russo A, Gianni L, Kinsella TJ et al (1984) Pharmacological evaluation of intravenous delivery of 5-bromodeoxyuridine to patients with brain tumors. Cancer Res 44:1702–1705

    PubMed  CAS  Google Scholar 

  18. Franz J, Kleinebrecht J (1982) Teratogenic and clastogenic effects of BUdR in mice. Teratology 26:195–202

    Article  PubMed  CAS  Google Scholar 

  19. Bruce WR, Heddle JA (1979) The mutagenic activity of 61 agents as determined by the micronucleus, Salmonella, and sperm abnormality assays. Can J Genet Cytol 21:319–334

    PubMed  CAS  Google Scholar 

  20. Maier P, Weibel B, Zbinden G (1983) The mutagenic activity of 5-bromo-2′-deoxyuridine (BrdU) in vivo in rats. Environ Mutagen 5:695–703

    Article  PubMed  CAS  Google Scholar 

  21. Best MD (2009) Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry 48:6571–6584

    Article  PubMed  CAS  Google Scholar 

  22. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48:6974–6998

    Article  PubMed  CAS  Google Scholar 

  23. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420

    Article  PubMed  CAS  Google Scholar 

  24. Gierlich J, Burley GA, Gramlich PM et al (2006) Click chemistry as a reliable method for the high-density postsynthetic functionalization of alkyne-modified DNA. Org Lett 8:3639–3642

    Article  PubMed  CAS  Google Scholar 

  25. Neef AB, Luedtke NW (2011) Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proc Natl Acad Sci U S A 108:20404–20409

    Article  PubMed  CAS  Google Scholar 

  26. Bonhoeffer S, Mohri H, Ho D et al (2000) Quantification of cell turnover kinetics using 5-bromo-2′-deoxyuridine. J Immunol 164:5049–5054

    PubMed  CAS  Google Scholar 

  27. Glauche I, Moore K, Thielecke L et al (2009) Stem cell proliferation and quiescence-two sides of the same coin. PLoS Comput Biol 5:e1000447

    Article  PubMed  Google Scholar 

  28. Espada J, Varela I, Flores I et al (2008) Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J Cell Biol 181:27–35

    Article  PubMed  CAS  Google Scholar 

  29. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  PubMed  CAS  Google Scholar 

  30. Pasolli HA (2011) The hair follicle bulge: a niche for adult stem cells. Microsc Microanal 17:513–519

    Article  PubMed  CAS  Google Scholar 

  31. Goldstein J, Horsley V (2012) Home sweet home: skin stem cell niches. Cell Mol Life Sci 69:2573–2582

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the Spanish Ministerio de Economía y Competitividad (SAF 11-23493) and the Comunidad Autónoma de Madrid (SkinModel, CAM S10/BMD-2359) to J.E.; E.C and M.I.C. are supported by Ph.D. fellowship grants of the Spanish Ministerio de Educación and Universidad Autónoma de Madrid, respectively.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Carrasco, E., Calvo, M.I., Espada, J. (2014). DNA Labeling In Vivo: Quantification of Epidermal Stem Cell Chromatin Content in Whole Mouse Hair Follicles Using Fiji Image Processing Software. In: Stockert, J., Espada, J., Blázquez-Castro, A. (eds) Functional Analysis of DNA and Chromatin. Methods in Molecular Biology, vol 1094. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-706-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-706-8_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-705-1

  • Online ISBN: 978-1-62703-706-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics