Skip to main content

DisMeta: A Meta Server for Construct Design and Optimization

  • Protocol
  • First Online:
Structural Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1091))

Abstract

Intrinsically disordered or unstructured regions in proteins are both common and biologically important, particularly in regulation, signaling, and modulating intermolecular recognition processes. From a practical point of view, however, such disordered regions often can pose significant challenges for crystallization. Disordered regions are also detrimental to NMR spectral quality, complicating the analysis of resonance assignments and three-dimensional protein structures by NMR methods. The DisMeta Server has been used by Northeastern Structural Genomics (NESG) consortium as a primary tool for construct design and optimization in preparing samples for both NMR and crystallization studies. It is a meta-server that generates a consensus analysis of eight different sequence-based disorder predictors to identify regions that are likely to be disordered. DisMeta also identifies predicted secretion signal peptides, transmembrane segments, and low-complexity regions. Identification of disordered regions, by either experimental or computational methods, is an important step in the NESG structure production pipeline, allowing the rational design of protein constructs that have improved expression and solubility, improved crystallization, and better quality NMR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12:54–60

    Article  CAS  PubMed  Google Scholar 

  2. Iakoucheva LM, Brown CJ, Lawson JD et al (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584

    Article  CAS  PubMed  Google Scholar 

  3. Radivojac P, Iakoucheva LM, Oldfield CJ et al (2007) Intrinsic disorder and functional proteomics. Biophys J 92:1439–1456

    Article  CAS  PubMed  Google Scholar 

  4. Kovacs D, Szabo B, Pancsa R et al (2012) Intrinsically disordered proteins undergo and assist folding transitions in the proteome. Arch Biochem Biophys 531:80–89

    Article  PubMed  Google Scholar 

  5. Liu J, Perumal NB, Oldfield CJ et al (2006) Intrinsic disorder in transcription factors. Biochemistry 45:6873–6888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Minezaki Y, Homma K, Kinjo AR et al (2006) Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. J Mol Biol 359:1137–1149

    Article  CAS  PubMed  Google Scholar 

  7. Balazs A, Csizmok V, Buday L et al (2009) High levels of structural disorder in scaffold proteins as exemplified by a novel neuronal protein, CASK-interactive protein1. FEBS J 276:3744–3756

    Article  CAS  PubMed  Google Scholar 

  8. Buday L, Tompa P (2010) Functional classification of scaffold proteins and related molecules. FEBS J 277:4348–4355

    Article  CAS  PubMed  Google Scholar 

  9. Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18:1169–1175

    Article  CAS  PubMed  Google Scholar 

  10. Dosztanyi Z, Chen J, Dunker AK et al (2006) Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res 5:2985–2995

    Article  CAS  PubMed  Google Scholar 

  11. Haynes C, Oldfield CJ, Ji F et al (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2:e100

    Google Scholar 

  12. Pantazatos D, Kim JS, Klock HE et al (2004) Rapid refinement of crystallographic protein construct definition employing enhanced hydrogen/deuterium exchange MS. Proc Natl Acad Sci USA 101:751–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spraggon G, Pantazatos D, Klock HE et al (2004) On the use of DXMS to produce more crystallizable proteins: structures of the T. maritima proteins TM0160 and TM1171. Protein Sci 13:3187–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sharma S, Zheng H, Huang YJ et al (2009) Construct optimization for protein NMR structure analysis using amide hydrogen/deuterium exchange mass spectrometry. Proteins 76:882–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Netzer WJ, Hartl FU (1997) Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388:343–349

    Article  CAS  PubMed  Google Scholar 

  16. Emanuelsson O, Brunak S, von Heijne G et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  17. Krogh A, Larsson B, von Heijne G et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  18. Wootton JC, Federhen S (1996) Analysis of compositionally biased regions in sequence databases. Methods Enzymol 266:554–571

    Article  CAS  PubMed  Google Scholar 

  19. Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32:W321–W326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  21. Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25:2745–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dessailly BH, Nair R, Jaroszewski L et al (2009) PSI-2: structural genomics to cover protein domain family space. Structure 17:869–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hunter S, Jones P, Mitchell A et al (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:D306–D312

    Article  CAS  PubMed  Google Scholar 

  24. Graslund S, Sagemark J, Berglund H et al (2008) The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expr Purif 58:210–221

    Article  PubMed  Google Scholar 

  25. Chikayama E, Kurotani A, Tanaka T et al (2010) Mathematical model for empirically optimizing large scale production of soluble protein domains. BMC Bioinformatics 11:113

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xiao R, Anderson S, Aramini J et al (2010) The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol 172:21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Acton TB, Xiao R, Anderson S et al (2011) Preparation of protein samples for NMR structure, function, and small-molecule screening studies. Methods Enzymol 493:21–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aramini JM, Rossi P, Huang YJ et al (2008) Solution NMR structure of the NlpC/P60 domain of lipoprotein Spr from Escherichia coli: structural evidence for a novel cysteine peptidase catalytic triad. Biochemistry 47:9715–9717

    Article  CAS  PubMed  Google Scholar 

  29. Rossi P, Aramini JM, Xiao R et al (2009) Structural elucidation of the Cys-His-Glu-Asn proteolytic relay in the secreted CHAP domain enzyme from the human pathogen Staphylococcus saprophyticus. Proteins 74:515–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Linding R, Jensen LJ, Diella F et al (2003) Protein disorder prediction: implications for structural proteomics. Structure 11:1453–1459

    Article  CAS  PubMed  Google Scholar 

  31. Ward JJ, Sodhi JS, McGuffin LJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    Article  CAS  PubMed  Google Scholar 

  32. Cheng JSM, Baldi P (2005) Accurate prediction of protein disordered regions by mining protein structure data. Data Min Knowl Discov 11:213–222

    Article  Google Scholar 

  33. Prilusky J, Felder CE, Zeev-Ben-Mordehai T et al (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–3438

    Article  CAS  PubMed  Google Scholar 

  34. Linding R, Russell RB, Neduva V et al (2003) GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res 31:3701–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dosztanyi Z, Csizmok V, Tompa P et al (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347:827–839

    Article  CAS  PubMed  Google Scholar 

  36. Yang ZR, Thomson R, McNeil P et al (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21:3369–3376

    Article  CAS  PubMed  Google Scholar 

  37. Vucetic S, Brown CJ, Dunker AK et al (2003) Flavors of protein disorder. Proteins 52:573–584

    Article  CAS  PubMed  Google Scholar 

  38. Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    Article  CAS  PubMed  Google Scholar 

  39. Romero P, Obradovic Z, Li X et al (2001) Sequence complexity of disordered protein. Proteins 42:38–48

    Article  CAS  PubMed  Google Scholar 

  40. Romero P, Obradovic Z, Dunker AK (1999) Folding minimal sequences: the lower bound for sequence complexity of globular proteins. FEBS Lett 462:363–367

    Article  CAS  PubMed  Google Scholar 

  41. Weathers EA, Paulaitis ME, Woolf TB et al (2007) Insights into protein structure and function from disorder-complexity space. Proteins 66:16–28

    Article  CAS  PubMed  Google Scholar 

  42. Finn RD, Mistry J, Tate J et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Zheng, S. Sharma, A. Ertekin, and R. Xiao for providing the HDX-MS data illustrated in this chapter and J. Aramini for providing the NMR spectrum shown in Fig. 5. The NMR data shown in Fig. 3 were recorded by P. Rossi. This work was supported by a grant from the National Institute of General Medical Sciences Protein Structure Initiative U54-GM074958 (to G.T.M.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Huang, Y.J., Acton, T.B., Montelione, G.T. (2014). DisMeta: A Meta Server for Construct Design and Optimization. In: Chen, Y. (eds) Structural Genomics. Methods in Molecular Biology, vol 1091. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-691-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-691-7_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-690-0

  • Online ISBN: 978-1-62703-691-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics