Skip to main content

Isotopomer Measurement Techniques in Metabolic Flux Analysis II: Mass Spectrometry

  • Protocol
  • First Online:
Plant Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1083))

Abstract

Mass spectrometry (MS) offers a sensitive, reliable, and highly accurate method for measurement of isotopic labeling, which is required for generating comprehensive flux maps using metabolic flux analysis (MFA). We present protocols for assessing isotope labeling in a wide range of biochemical species, including proteinogenic amino acids, free organic and amino acids, sugar phosphates, lipids, starch-glucose, and RNA-ribose. We describe the steps of sample preparation, MS analysis, and data handling required to obtain high-quality isotope labeling measurements that are applicable to MFA. By selecting target analytes that maximize identifiability of the key fluxes of interest, MS measurements of isotope labeling can provide a powerful platform for assessing metabolic fluxes in complex biochemical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  PubMed  Google Scholar 

  2. Zamboni N, Fendt SM, Ruhl M, Sauer U (2009) (13)C-based metabolic flux analysis. Nat Protoc 4:878–892

    Article  PubMed  CAS  Google Scholar 

  3. Paula Alonso A, Dale VL, Shachar-Hill Y (2010) Understanding fatty acid synthesis in developing maize embryos using metabolic flux analysis. Metab Eng 12:488–497

    Article  CAS  Google Scholar 

  4. Yang C, Hua Q, Shimizu K (2002) Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab Eng 4:202–216

    Article  PubMed  CAS  Google Scholar 

  5. Allen D, Ratcliffe R (2009) Quantification of isotope label. In: Schwender J (ed) Plant Metabolic Networks. Springer, New York, pp 105–149

    Google Scholar 

  6. Kitson FG, Larsen BS, McEwen CN (1996) Gas chromatography and mass spectrometry : a practical guide. Academic, San Diego

    Google Scholar 

  7. Wolfe RR, Chinkes DL (2005) Isotope Tracers in Metabolic Research: Principles and Practice of Kinetic Analysis. Wiley, Hoboken, NJ

    Google Scholar 

  8. Lu W, Bennett BD, Rabinowitz JD (2008) Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 871:236–242

    Article  PubMed  CAS  Google Scholar 

  9. Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16:642–649

    Article  PubMed  CAS  Google Scholar 

  10. Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99:686–699

    Article  PubMed  CAS  Google Scholar 

  11. Allen DK, Shachar-Hill Y, Ohlrogge JB (2007) Compartment-specific labeling information in 13C metabolic flux analysis of plants. Phytochemistry 68:2197–2210

    Article  PubMed  CAS  Google Scholar 

  12. Zamboni N, Sauer U (2009) Novel biological insights through metabolomics and 13C-flux analysis. Curr Opin Microbiol 12:553–558

    Article  PubMed  CAS  Google Scholar 

  13. Luo B, Groenke K, Takors R, Wandrey C, Oldiges M (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 1147:153–164

    Article  PubMed  CAS  Google Scholar 

  14. Ausloos P, Clifton CL, Lias SG, Mikaya AI, Stein SE, Tchekhovskoi DV, Sparkman OD, Zaikin V, Zhu D (1999) The critical evaluation of a comprehensive mass spectral library. J Am Soc Mass Spectrom 10:287–299

    Article  PubMed  CAS  Google Scholar 

  15. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638

    Article  PubMed  CAS  Google Scholar 

  16. Kind T, Wohlgemuth G, Lee do Y, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048

    Article  PubMed  CAS  Google Scholar 

  17. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  PubMed  CAS  Google Scholar 

  18. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35:D521–D526

    Article  PubMed  CAS  Google Scholar 

  19. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714

    Article  PubMed  CAS  Google Scholar 

  20. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem 79:7554–7559

    Article  PubMed  CAS  Google Scholar 

  21. Price NP (2004) Acylic sugar derivatives for GC/MS analysis of 13C-enrichment during carbohydrate metabolism. Anal Chem 76:6566–6574

    Article  PubMed  CAS  Google Scholar 

  22. Antoniewicz MR (2006) Comprehensive Analysis of Metabolic Pathways Through the Combined Use of Multiple Isotopic Tracers, In Chemical Engineering, p 370. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  23. Christie WW (1993) Preparation of ester derivatives of fatty acids for chromatographic analysis. Advances in lipid methodology 2:69–111

    Google Scholar 

  24. Yang L, Kasumov T, Yu L, Jobbins KA, David F, Previs SF, Kelleher JK, Brunengraber H (2006) Metabolomic assays of the concentration and mass isotopomer distribution of gluconeogenic and citric acid cycle intermediates. Metabolomics 2:85–94

    Article  CAS  Google Scholar 

  25. Shastri AA (2008) Metabolic flux analysis of photosynthetic systems, In School of Chemical Engineering. Purdue University, West Lafayette, IN

    Google Scholar 

  26. Fernandez CA, Des Rosiers C, Previs SF, David F, Brunengraber H (1996) Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31:255–262

    Article  PubMed  CAS  Google Scholar 

  27. Coplen T, Böhlke J, De Bievre P, Ding T, Holden N, Hopple J, Krouse H, Lamberty A, Peiser H, Revesz K (2002) Isotope-abundance variations of selected elements:(IUPAC technical report). Pure Applied Chem 74:1987–2017

    Article  CAS  Google Scholar 

  28. Kiefer P, Nicolas C, Letisse F, Portais JC (2007) Determination of carbon labeling distribution of intracellular metabolites from single fragment ions by ion chromatography tandem mass spectrometry. Anal Biochem 360:182–188

    Article  PubMed  CAS  Google Scholar 

  29. Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hugler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460

    Article  PubMed  CAS  Google Scholar 

  30. Lonien J, Schwender J (2009) Analysis of metabolic flux phenotypes for two Arabidopsis mutants with severe impairment in seed storage lipid synthesis. Plant Physiol 151:1617–1634

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by NSF CAREER Award CBET-0955251 (to J.D.Y).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Young, J.D., Allen, D.K., Morgan, J.A. (2014). Isotopomer Measurement Techniques in Metabolic Flux Analysis II: Mass Spectrometry. In: Sriram, G. (eds) Plant Metabolism. Methods in Molecular Biology, vol 1083. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-661-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-661-0_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-660-3

  • Online ISBN: 978-1-62703-661-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics