Skip to main content

Preparation of C-terminally Modified Chemokines by Expressed Protein Ligation

  • Protocol
  • First Online:
Peptide Synthesis and Applications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1047))

Abstract

In order to link structural features on a molecular level to the function of chemokines, site-specific modification strategies are strongly required. These can be used to incorporate fluorescent dyes and/or physical probes to allow investigations in a wide range of biological and physical techniques, e.g., nuclear magnetic resonance (NMR) spectroscopy, fluorescence microscopy, fluorescence resonance energy transfer (FRET), or fluorescence correlation spectroscopy (FCS). Only a limited number of functional groups within the 20 canonical amino acids allow ligation strategies that can be helpful to introduce novel functionalities, which in turn expand the scope of chemoselective and orthogonal reactivity of (semi)synthetic chemokines. In the present chapter we mainly focus on the fabulous history of native chemical ligation (NCL) and provide a general protocol for the preparation of C-terminally modified SDF-1α including tips and tricks for practical work. We believe that this protocol can be easily adapted to other chemokines and many proteins in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schnolzer M, Kent SB (1992) Constructing proteins by dovetailing unprotected synthetic peptides: backbone-engineered HIV protease. Science 256:221–225

    Article  PubMed  CAS  Google Scholar 

  2. Dawson PE et al (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  PubMed  CAS  Google Scholar 

  3. Hackeng TM, Griffin JH, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci U S A 96:10068–10073

    Article  PubMed  CAS  Google Scholar 

  4. Wieland T et al (1953) Ueber Peptidsynthesen. 8. Bildung von S-haltigen Peptiden durch intramolekulare Wanderung von Aminoacylresten. Liebigs Ann Chem 583:129–149

    Article  CAS  Google Scholar 

  5. Zhang LS, Tam JP (1997) Orthogonal coupling of unprotected peptide segments through histidyl amino terminus. Tetrahedron Lett 38:3–6

    Article  CAS  Google Scholar 

  6. Raines RT, Hondal RJ, Nilsson BL (2001) Selenocysteine in native chemical ligation and expressed protein ligation. J Am Chem Soc 123:5140–5141

    Article  PubMed  Google Scholar 

  7. Bang D et al (2006) Dissecting the energetics of protein alpha-helix C-cap termination through chemical protein synthesis. Nat Chem Biol 2:139–143

    Article  PubMed  CAS  Google Scholar 

  8. Bang D et al (2005) Total chemical synthesis and X-ray crystal structure of a protein diastereomer: [D-Gln 35]ubiquitin. Angew Chem Int Ed Engl 44:3852–3856

    Article  PubMed  CAS  Google Scholar 

  9. Yan LZ, Dawson PE (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 123:526–533

    Article  PubMed  CAS  Google Scholar 

  10. Bernardes GJ et al (2008) Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins. J Am Chem Soc 130:5052–5053

    Article  PubMed  CAS  Google Scholar 

  11. Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed Engl 46:9248–9252

    Article  PubMed  CAS  Google Scholar 

  12. Crich D, Banerjee A (2007) Native chemical ligation at phenylalanine. J Am Chem Soc 129:10064–10065

    Article  PubMed  CAS  Google Scholar 

  13. Chen J et al (2008) Native chemical ligation at valine: a contribution to peptide and glycopeptide synthesis. Angew Chem Int Ed Engl 47:8521–8524

    Article  PubMed  CAS  Google Scholar 

  14. Haase C, Rohde H, Seitz O (2008) Native chemical ligation at valine. Angew Chem Int Ed Engl 47:6807–6810

    Article  PubMed  CAS  Google Scholar 

  15. Liu XW et al (2009) Dual native chemical ligation at lysine. J Am Chem Soc 131:13592–13593

    Article  PubMed  Google Scholar 

  16. Harpaz Z et al (2010) Protein synthesis assisted by native chemical ligation at leucine. ChemBioChem 11:1232–1235

    Article  PubMed  CAS  Google Scholar 

  17. Chen J et al (2010) A program for ligation at threonine sites: application to the controlled total synthesis of glycopeptides. Tetrahedron 66:2277–2283

    Article  PubMed  CAS  Google Scholar 

  18. Danishefsky SJ et al (2011) An advance in proline ligation. J Am Chem Soc 133:10784–10786

    Article  PubMed  Google Scholar 

  19. Brik A et al (2006) Sugar-assisted glycopeptide ligation. J Am Chem Soc 128:5626–5627

    Article  PubMed  CAS  Google Scholar 

  20. Ficht S et al (2007) Second-generation sugar-assisted ligation: a method for the synthesis of cysteine-containing glycopeptides. Angew Chem Int Ed Engl 46:5975–5979

    Article  PubMed  CAS  Google Scholar 

  21. Yang YY et al (2007) Sugar-assisted ligation in glycoprotein synthesis. J Am Chem Soc 129:7690–7701

    Article  PubMed  CAS  Google Scholar 

  22. Chong S et al (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192:271–281

    Article  PubMed  CAS  Google Scholar 

  23. Chong S et al (1998) Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res 26:5109–5115

    Article  PubMed  CAS  Google Scholar 

  24. Hirata R et al (1990) Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 265:6726–6733

    PubMed  CAS  Google Scholar 

  25. Kane PM et al (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 250:651–657

    Article  PubMed  CAS  Google Scholar 

  26. Klabunde T et al (1998) Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Nat Struct Biol 5:31–36

    Article  PubMed  CAS  Google Scholar 

  27. David R, Richter MP, Beck-Sickinger AG (2004) Expressed protein ligation. Method and applications. Eur J Biochem 271:663–677

    Article  PubMed  CAS  Google Scholar 

  28. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: A general method for protein engineering. Proc Natl Acad Sci U S A 95:6705–6710

    Article  PubMed  CAS  Google Scholar 

  29. Southworth MW et al (1999) Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques 27:110–114, 116, 118–120

    PubMed  CAS  Google Scholar 

  30. Baumann L, Beck-Sickinger AG (2010) Identification of a potential modification site in human stromal cell-derived factor-1. Biopolymers 94:771–778

    Article  PubMed  CAS  Google Scholar 

  31. Bellmann-Sickert K, Baumann L, Beck-Sickinger AG (2010) Selective labelling of stromal cell-derived factor 1alpha with carboxyfluorescein to study receptor internalisation. J Pept Sci 16:568–574

    Article  PubMed  CAS  Google Scholar 

  32. David R, Beck-Sickinger AG (2007) Identification of the dimerisation interface of human interleukin-8 by IL-8-variants containing the photoactivatable amino acid benzoyl-phenylalanine. Eur Biophys J 36:385–391

    Article  PubMed  CAS  Google Scholar 

  33. David R, Machova Z, Beck-Sickinger AG (2003) Semisynthesis and application of carboxyfluorescein-labelled biologically active human interleukin-8. Biol Chem 384:1619–1630

    Article  PubMed  CAS  Google Scholar 

  34. Steinhagen M et al (2011) Simultaneous “one pot” expressed protein ligation and CuI-catalyzed azide/alkyne cycloaddition for protein immobilization. ChemBioChem 12:2426–2430

    Article  PubMed  CAS  Google Scholar 

  35. Bellmann-Sickert K, Beck-Sickinger AG (2011) Palmitoylated SDF1alpha shows increased resistance against proteolytic degradation in liver homogenates. ChemMedChem 6:193–200

    Article  PubMed  CAS  Google Scholar 

  36. Dumy P et al (1998) Hydrazinolysis of Dde: complete orthogonality with Aloc protecting groups. Tetrahedron Lett 39:1175–1178

    Article  Google Scholar 

  37. Dechavanne V et al (2011) A high-throughput protein refolding screen in 96-well format combined with design of experiments to optimize the refolding conditions. Protein Expr Purif 75:192–203

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Baumann, L., Steinhagen, M., Beck-Sickinger, A.G. (2013). Preparation of C-terminally Modified Chemokines by Expressed Protein Ligation. In: Jensen, K., Tofteng Shelton, P., Pedersen, S. (eds) Peptide Synthesis and Applications. Methods in Molecular Biology, vol 1047. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-544-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-544-6_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-543-9

  • Online ISBN: 978-1-62703-544-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics