Skip to main content

Transplantation Tolerance

  • Protocol
  • First Online:
Transplantation Immunology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1034))

  • 4695 Accesses

Abstract

Tolerance has been defined as graft-specific survival in the absence of continued immunosuppression. The mechanisms of central and peripheral tolerance are discussed in this review, as well as the barriers and limitations in achieving graft-specific tolerance. The need remains for definitive laboratory assays to determine the presence of a tolerant state. Genetic biomarker analysis pre-transplant may allow for better donor: recipient matching, lessening the need for immunosuppression, while post-transplant analysis of biomarkers, certain cytokines, and regulatory leukocytes may permit minimally invasive assessment of graft function and potentially, of graft-specific tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murray JE, Tilney NL, Wilson RE (1976) Renal transplantation: a twenty-five year experience. Ann Surg 184(5):565–573

    Article  PubMed  CAS  Google Scholar 

  2. Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172(4379):603–606

    Article  PubMed  CAS  Google Scholar 

  3. Sachs DH (2011) Transplant tolerance: bench to bedside–26th annual Samuel Jason Mixter Lecture. Arch Surg 146(5):501–505

    Article  PubMed  Google Scholar 

  4. Hogquist KA, Baldwin TA, Jameson SC (2005) Central tolerance: learning self-control in the thymus. Nat Rev Immunol 5(10):772–782

    Article  PubMed  CAS  Google Scholar 

  5. Mueller DL (2010) Mechanisms maintaining peripheral tolerance. Nat Immunol 11(1): 21–27

    Article  PubMed  CAS  Google Scholar 

  6. Wood KJ, Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3(3):199–210

    Article  PubMed  CAS  Google Scholar 

  7. Sayegh MH, Remuzzi G (2007) Clinical update: immunosuppression minimisation. Lancet 369(9574):1676–1678

    Article  PubMed  Google Scholar 

  8. Suchin EJ, Langmuir PB, Palmer E et al (2001) Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol 166(2):973–981

    PubMed  CAS  Google Scholar 

  9. Ford ML, Larsen CP (2011) Overcoming the memory barrier in tolerance induction: molecular mimicry and functional heterogeneity among pathogen-specific T-cell populations. Curr Opin Organ Transplant 15(4):405–410

    Article  Google Scholar 

  10. Du W, Shen H, Galan A et al (2011) An age-specific CD8+ T cell pathway that impairs the effectiveness of strategies to prolong allograft survival. J Immunol 187(7):3631–3640

    Article  PubMed  CAS  Google Scholar 

  11. Mulley WR, Kanellis J (2011) Understanding crossmatch testing in organ transplantation: a case-based guide for the general nephrologist. Nephrology (Carlton) 16(2):125–133

    Article  Google Scholar 

  12. Karpinski M, Rush D, Jeffery J et al (2001) Flow cytometric crossmatching in primary renal transplant recipients with a negative anti-human globulin enhanced cytotoxicity crossmatch. J Am Soc Nephrol 12(12): 2807–2814

    PubMed  CAS  Google Scholar 

  13. Fanning LR, Hegerfeldt Y, Tary-Lehmann M et al (2008) Allogeneic transplantation of multiple umbilical cord blood units in adults: role of pretransplant-mixed lymphocyte reaction to predict host-vs-graft rejection. Leukemia 22(9):1786–1790

    Article  PubMed  CAS  Google Scholar 

  14. Ashokkumar C, Talukdar A, Sun Q et al (2009) Allospecific CD154+ T cells associate with rejection risk after pediatric liver transplantation. Am J Transplant 9(1): 179–191

    Article  PubMed  CAS  Google Scholar 

  15. Takeda A, Horike K, Ohtsuka Y et al (2011) Current problems of chronic active antibody-mediated rejection. Clin Transplant 25(Suppl 23):2–5

    Article  PubMed  Google Scholar 

  16. Schutz A, Breuer M, Kemkes BM (1997) Antimyosin antibodies in cardiac rejection. Ann Thorac Surg 63(2):578–581

    Article  PubMed  CAS  Google Scholar 

  17. Zhang Q, Reed EF (2010) Non-MHC antigenic targets of the humoral immune response in transplantation. Curr Opin Immunol 22(5):682–688

    Article  PubMed  CAS  Google Scholar 

  18. Roedder S, Vitalone M, Khatri P et al (2011) Biomarkers in solid organ transplantation: establishing personalized transplantation medicine. Genome Med 3(6):37

    Article  PubMed  Google Scholar 

  19. Israni A, Leduc R, Holmes J et al (2010) Single-nucleotide polymorphisms, acute rejection, and severity of tubulitis in kidney transplantation, accounting for center-to-center variation. Transplantation 90(12):1401–1408

    Article  PubMed  CAS  Google Scholar 

  20. Sagoo P, Perucha E, Sawitzki B et al (2010) Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J Clin Invest 120(6):1848–1861

    Article  PubMed  CAS  Google Scholar 

  21. Newell KA, Asare A, Kirk AD et al (2010) Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest 120(6):1836–1847

    Article  PubMed  CAS  Google Scholar 

  22. Martinez-Llordella M, Lozano JJ, Puig-Pey I et al (2008) Using transcriptional profiling to develop a diagnostic test of operational tolerance in liver transplant recipients. J Clin Invest 118(8):2845–2857

    PubMed  CAS  Google Scholar 

  23. Hartono C, Muthukumar T, Suthanthiran M (2010) Noninvasive diagnosis of acute rejection of renal allografts. Curr Opin Organ Transplant 15(1):35–41

    Article  PubMed  Google Scholar 

  24. Afaneh C, Muthukumar T, Lubetzky M et al (2010) Urinary cell levels of mRNA for OX40, OX40L, PD-1, PD-L1, or PD-L2 and acute rejection of human renal allografts. Transplantation 90(12):1381–1387

    Article  PubMed  CAS  Google Scholar 

  25. van Ham SM, Heutinck KM, Jorritsma T et al (2010) Urinary granzyme A mRNA is a biomarker to diagnose subclinical and acute cellular rejection in kidney transplant recipients. Kidney Int 78(10):1033–1040

    Article  PubMed  Google Scholar 

  26. Muthukumar T, Dadhania D, Ding R et al (2005) Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med 353(22):2342–2351

    Article  PubMed  CAS  Google Scholar 

  27. Kamoun M, Boyd JC (2006) Urinary FOXP3 messenger RNA and renal-allograft rejection. N Engl J Med 354(21):2291–2293, author reply 2291-2293

    Article  PubMed  CAS  Google Scholar 

  28. Hu H, Aizenstein BD, Puchalski A et al (2004) Elevation of CXCR3-binding chemokines in urine indicates acute renal-allograft dysfunction. Am J Transplant 4(3):432–437

    Article  PubMed  CAS  Google Scholar 

  29. Jackson JA, Kim EJ, Begley B et al (2011) Urinary chemokines CXCL9 and CXCL10 are noninvasive markers of renal allograft rejection and BK viral infection. Am J Transplant 11(10):2228–2234

    Article  PubMed  CAS  Google Scholar 

  30. Ho J, Rush DN, Gibson IW et al (2010) Early urinary CCL2 is associated with the later development of interstitial fibrosis and tubular atrophy in renal allografts. Transplantation 90(4):394–400

    Article  PubMed  CAS  Google Scholar 

  31. Li Y, Koshiba T, Yoshizawa A et al (2004) Analyses of peripheral blood mononuclear cells in operational tolerance after pediatric living donor liver transplantation. Am J Transplant 4(12):2118–2125

    Article  PubMed  Google Scholar 

  32. Martinez-Llordella M, Puig-Pey I, Orlando G et al (2007) Multiparameter immune profiling of operational tolerance in liver transplantation. Am J Transplant 7(2):309–319

    Article  PubMed  CAS  Google Scholar 

  33. Brouard S, Mansfield E, Braud C et al (2007) Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc Natl Acad Sci USA 104(39):15448–15453

    Article  PubMed  CAS  Google Scholar 

  34. Benitez C, Lozano JJ, Fueyo AS (2009) Gene expression profiling and transplantation tolerance in the clinic. Transplantation 88(3 Suppl):S50–S53

    Article  PubMed  CAS  Google Scholar 

  35. Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30(5):626–635

    Article  PubMed  CAS  Google Scholar 

  36. Schliesser U, Streitz M, Sawitzki B (2012) Tregs: application for solid-organ transplantation. Curr Opin Organ Transplant 17(1): 34–41

    Article  PubMed  CAS  Google Scholar 

  37. Peters JH, Hilbrands LB, Koenen HJ et al (2008) Ex vivo generation of human alloantigen-specific regulatory T cells from CD4(pos)CD25(high) T cells for immunotherapy. PLoS One 3(5):e2233

    Article  PubMed  Google Scholar 

  38. Sagoo P, Ali N, Garg G et al (2011) Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells. Sci Transl Med 3(83):83ra42

    Article  PubMed  Google Scholar 

  39. Kawai T, Cosimi AB, Spitzer TR et al (2008) HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med 358(4):353–361

    Article  PubMed  CAS  Google Scholar 

  40. Di Ianni M, Falzetti F, Carotti A et al (2011) Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117(14):3921–3928

    Article  PubMed  Google Scholar 

  41. Demirkiran A, Bosma BM, Kok A et al (2007) Allosuppressive donor CD4 + CD25+ regulatory T cells detach from the graft and circulate in recipients after liver transplantation. J Immunol 178(10):6066–6072

    PubMed  CAS  Google Scholar 

  42. Kmieciak M, Gowda M, Graham L et al (2009) Human T cells express CD25 and Foxp3 upon activation and exhibit effector/memory phenotypes without any regulatory/suppressor function. J Transl Med 7:89

    Article  PubMed  Google Scholar 

  43. Zheng Y, Manzotti CN, Burke F et al (2008) Acquisition of suppressive function by activated human CD4+ CD25- T cells is associated with the expression of CTLA-4 not FoxP3. J Immunol 181(3):1683–1691

    PubMed  CAS  Google Scholar 

  44. Goni O, Alcaide P, Fresno M (2002) Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1(+))CD11b(+)immature myeloid suppressor cells. Int Immunol 14(10):1125–1134

    Article  PubMed  CAS  Google Scholar 

  45. Giordanengo L, Guinazu N, Stempin C et al (2002) Cruzipain, a major Trypanosoma cruzi antigen, conditions the host immune response in favor of parasite. Eur J Immunol 32(4):1003–1011

    Article  PubMed  CAS  Google Scholar 

  46. Voisin MB, Buzoni-Gatel D, Bout D et al (2004) Both expansion of regulatory GR1+ CD11b + myeloid cells and anergy of T lymphocytes participate in hyporesponsiveness of the lung-associated immune system during acute toxoplasmosis. Infect Immun 72(9):5487–5492

    Article  PubMed  CAS  Google Scholar 

  47. Mencacci A, Montagnoli C, Bacci A et al (2002) CD80 + Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J Immunol 169(6):3180–3190

    PubMed  CAS  Google Scholar 

  48. Kerr EC, Raveney BJ, Copland DA et al (2008) Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun 31(4):354–361

    Article  PubMed  CAS  Google Scholar 

  49. Nicholson LB, Raveney BJ, Munder M (2009) Monocyte dependent regulation of autoimmune inflammation. Curr Mol Med 9(1):23–29

    Article  PubMed  CAS  Google Scholar 

  50. Haile LA, von Wasielewski R, Gamrekelashvili J et al (2008) Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135(3):871–881, 881 e871–875

    Article  PubMed  CAS  Google Scholar 

  51. Llopiz D, Dotor J, Casares N et al (2009) Peptide inhibitors of transforming growth factor-beta enhance the efficacy of antitumor immunotherapy. Int J Cancer 125(11):2614–2623

    Article  PubMed  CAS  Google Scholar 

  52. Serafini P, De Santo C, Marigo I et al (2004) Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 53(2):64–72

    Article  PubMed  CAS  Google Scholar 

  53. Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191

    Article  PubMed  CAS  Google Scholar 

  54. Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11(4):173–186

    Article  PubMed  CAS  Google Scholar 

  55. Szuster-Ciesielska A, Hryciuk-Umer E, Stepulak A et al (2004) Reactive oxygen species production by blood neutrophils of patients with laryngeal carcinoma and antioxidative enzyme activity in their blood. Acta Oncol 43(3):252–258

    Article  PubMed  CAS  Google Scholar 

  56. Boros P, Ochando JC, Chen SH et al (2010) Myeloid-derived suppressor cells: natural regulators for transplant tolerance. Hum Immunol 71(11):1061–1066

    Article  PubMed  CAS  Google Scholar 

  57. Dilek N, van Rompaey N, Le Moine A et al (2010) Myeloid-derived suppressor cells in transplantation. Curr Opin Organ Transplant 15:765–768

    Google Scholar 

  58. Chou HS, Hsieh CC, Charles R et al (2011) Myeloid-derived suppressor cells protect islet transplants by B7-H1 mediated enhancement of T regulatory cells. Transplantation 93(3):272–282

    Article  Google Scholar 

  59. Adeegbe D, Serafini P, Bronte V et al (2010) In vivo induction of myeloid suppressor cells and CD4(+)Foxp3(+) T regulatory cells prolongs skin allograft survival in mice. Cell Transplant 20(6):941–954

    Article  PubMed  Google Scholar 

  60. Zhou Z, French DL, Ma G et al (2010) Development and function of myeloid-derived suppressor cells generated from mouse embryonic and hematopoietic stem cells. Stem Cells 28(3):620–632

    PubMed  CAS  Google Scholar 

  61. Dugast AS, Haudebourg T, Coulon F et al (2008) Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol 180(12):7898–7906

    PubMed  CAS  Google Scholar 

  62. Garcia MR, Ledgerwood L, Yang Y et al (2010) Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. J Clin Invest 120(7):2486–2496

    Article  PubMed  CAS  Google Scholar 

  63. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  PubMed  CAS  Google Scholar 

  64. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  PubMed  CAS  Google Scholar 

  65. Jonuleit H, Schmitt E, Schuler G et al (2000) Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192(9):1213–1222

    Article  PubMed  CAS  Google Scholar 

  66. Olszewski WL (2003) Tolerogenic properties of dendritic cells in allografting. Ann Transplant 8(4):5–9

    PubMed  Google Scholar 

  67. Gandhi R, Anderson DE, Weiner HL (2007) Cutting edge: immature human dendritic cells express latency-associated peptide and inhibit T cell activation in a TGF-beta-dependent manner. J Immunol 178(7):4017–4021

    PubMed  CAS  Google Scholar 

  68. Tuettenberg A, Huter E, Hubo M et al (2009) The role of ICOS in directing T cell responses: ICOS-dependent induction of T cell anergy by tolerogenic dendritic cells. J Immunol 182(6):3349–3356

    Article  PubMed  CAS  Google Scholar 

  69. Steinman RM, Turley S, Mellman I et al (2000) The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 191(3):411–416

    Article  PubMed  CAS  Google Scholar 

  70. Misra N, Bayry J, Lacroix-Desmazes S et al (2004) Cutting edge: human CD4 + CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 172(8):4676–4680

    PubMed  CAS  Google Scholar 

  71. Thomson AW, Robbins PD (2008) Tolerogenic dendritic cells for autoimmune disease and transplantation. Ann Rheum Dis 67(Suppl 3):iii90–iii96

    Article  PubMed  CAS  Google Scholar 

  72. van Kooten C, Lombardi G, Gelderman KA et al (2011) Dendritic cells as a tool to induce transplantation tolerance: obstacles and opportunities. Transplantation 91(1):2–7

    Article  PubMed  Google Scholar 

  73. Otter D, Cao M, Lin HM et al (2011) Identification of urinary biomarkers of colon inflammation in IL10-/- mice using Short-Column LCMS metabolomics. J Biomed Biotechnol 2011:974701

    Article  PubMed  Google Scholar 

  74. Shull MM, Ormsby I, Kier AB et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359(6397):693–699

    Article  PubMed  CAS  Google Scholar 

  75. Kulkarni AB, Huh CG, Becker D et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90(2):770–774

    Article  PubMed  CAS  Google Scholar 

  76. Regateiro FS, Howie D, Cobbold SP et al (2011) TGF-beta in transplantation tolerance. Curr Opin Immunol 23(5):660–669

    Article  PubMed  CAS  Google Scholar 

  77. Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198(12):1875–1886

    Article  PubMed  CAS  Google Scholar 

  78. Zheng SG, Wang JH, Gray JD et al (2004) Natural and induced CD4 + CD25+ cells educate CD4 + CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 172(9):5213–5221

    PubMed  CAS  Google Scholar 

  79. Takaki H, Ichiyama K, Koga K et al (2008) STAT6 Inhibits TGF-beta1-mediated Foxp3 induction through direct binding to the Foxp3 promoter, which is reverted by retinoic acid receptor. J Biol Chem 283(22):14955–14962

    Article  PubMed  CAS  Google Scholar 

  80. Fragale A, Gabriele L, Stellacci E et al (2008) IFN regulatory factor-1 negatively regulates CD4+ CD25+ regulatory T cell differentiation by repressing Foxp3 expression. J Immunol 181(3):1673–1682

    PubMed  CAS  Google Scholar 

  81. Bader BL, Rayburn H, Crowley D et al (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95(4):507–519

    Article  PubMed  CAS  Google Scholar 

  82. Veldhoen M, Hocking RJ, Atkins CJ et al (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24(2):179–189

    Article  PubMed  CAS  Google Scholar 

  83. Atarashi K, Nishimura J, Shima T et al (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455(7214):808–812

    Article  PubMed  CAS  Google Scholar 

  84. Brustle A, Heink S, Huber M et al (2007) The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 8(9):958–966

    Article  PubMed  Google Scholar 

  85. Chen Q, Yang W, Gupta S et al (2008) IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity 29(6):899–911

    Article  PubMed  CAS  Google Scholar 

  86. Mellor AL, Sivakumar J, Chandler P et al (2001) Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nat Immunol 2(1):64–68

    Article  PubMed  CAS  Google Scholar 

  87. Baban B, Chandler PR, Sharma MD et al (2009) IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J Immunol 183(4):2475–2483

    Article  PubMed  CAS  Google Scholar 

  88. Prendergast GC, Metz R, Muller AJ (2009) IDO recruits Tregs in melanoma. Cell Cycle 8(12):1818–1819

    Article  PubMed  CAS  Google Scholar 

  89. Jacquemier J, Bertucci F, Finetti P et al (2012) High expression of indoleamine 2,3-dioxygenase in the tumour is associated with medullary features and favourable outcome in basal-like breast carcinoma. Int J Cancer 130(1):96–104

    Article  PubMed  CAS  Google Scholar 

  90. Gustafsson C, Mjosberg J, Matussek A et al (2008) Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS One 3(4):e2078

    Article  PubMed  Google Scholar 

  91. Furuzawa-Carballeda J, Lima G, Jakez-Ocampo J et al (2011) Indoleamine 2,3-dioxygenase-expressing peripheral cells in rheumatoid arthritis and systemic lupus erythematosus: a cross-sectional study. Eur J Clin Invest 41(10):1037–1046

    Article  PubMed  CAS  Google Scholar 

  92. Avril T, Saikali S, Vauleon E et al (2010) Distinct effects of human glioblastoma immunoregulatory molecules programmed cell death ligand-1 (PDL-1) and indoleamine 2,3-dioxygenase (IDO) on tumour-specific T cell functions. J Neuroimmunol 225(1–2):22–33

    Article  PubMed  CAS  Google Scholar 

  93. Widner B, Werner ER, Schennach H et al (1997) Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem 43(12):2424–2426

    PubMed  CAS  Google Scholar 

  94. Braun D, Longman RS, Albert ML (2005) A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 106(7):2375–2381

    Article  PubMed  CAS  Google Scholar 

  95. Nadazdin O, Abrahamian G, Boskovic S et al (2011) Stem cell mobilization and collection for induction of mixed chimerism and renal allograft tolerance in cynomolgus monkeys. J Surg Res 168(2):294–300

    Article  PubMed  CAS  Google Scholar 

  96. Lobashevsky AL, Jiang XL, Thomas JM (2002) Allele-specific in situ analysis of microchimerism by fluorescence resonance energy transfer (FRET) in nonhuman primate tissues. Hum Immunol 63(2):108–120

    Article  PubMed  CAS  Google Scholar 

  97. Han D, Berman DM, Kenyon NS (2007) Sequence-specific analysis of microchimerism by real-time quantitative polymerase chain reaction in same-sex nonhuman primates after islet and bone marrow transplantation. Transplantation 84(12):1677–1685

    Article  PubMed  CAS  Google Scholar 

  98. Reitsma MJ, Harrison MR, Pallavicini MG (1993) Detection of a male-specific sequence in nonhuman primates through use of the polymerase chain reaction. Cytogenet Cell Genet 64(3–4):213–216

    Article  PubMed  CAS  Google Scholar 

  99. Kawai T, Sogawa H, Boskovic S et al (2004) CD154 blockade for induction of mixed chimerism and prolonged renal allograft survival in nonhuman primates. Am J Transplant 4(9):1391–1398

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brinkman, C., Burrell, B., Scalea, J., Bromberg, J.S. (2013). Transplantation Tolerance. In: Zachary, A., Leffell, M. (eds) Transplantation Immunology. Methods in Molecular Biology, vol 1034. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-493-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-493-7_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-492-0

  • Online ISBN: 978-1-62703-493-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics