Skip to main content

Methods for Studying Toxicity of Silica-Based Nanomaterials to Living Cells

  • Protocol
  • First Online:
NanoBiotechnology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1026))

  • 1997 Accesses

Abstract

A number of silica-based nanomaterials have been developed in recent years. An important application of these nanomaterials is in the field of biological and biomedical applications. However, a major concern about the safety of the nanomaterials in vitro has been proposed. To address this problem, several approaches have been developed for a systematic investigation of the cytotoxicity and genotoxicity of silica-based nanoparticles. These methods are mainly based on the traditional toxicity study approaches but with some modifications. In this chapter, four important methods for studying of toxicity of silica-based nanomaterials are summarized. These methods can detect cell proliferation, cell viability, DNA damage, and the generation of reactive oxygen species (ROS). The protocols of each method are introduced in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439

    Article  CAS  Google Scholar 

  2. Zhao X, Hilliard LR, Mechery JM, Wang Y, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantization using bioconjugated nanoparticles. Proc Natl Acad Sci USA 101(42):15027–15032

    Article  CAS  Google Scholar 

  3. Zhao X, Dytocio RT, Tan W (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 125(38):11474–11475

    Article  CAS  Google Scholar 

  4. Zhao X, Dytocio RT, Tan W (2003) Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Anal Chem 75(14):3476–3483

    Article  CAS  Google Scholar 

  5. Lin W, Huang YW, Zhou XD, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217:252–259

    Article  CAS  Google Scholar 

  6. Liu X, Whitefield PD, Ma Y (2010) Quantification of F(2)-isoprostane isomers in cultured human lung epithelial cells after silica oxide and metal oxide nanoparticle treatment by liquid chromatography/tandem mass spectrometry. Talanta 81:1599–1606

    Article  CAS  Google Scholar 

  7. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  CAS  Google Scholar 

  8. Jin Y, Li A, John CL, Hazelton SG, Liang S, Selid PD, Pierce DT, Zhao JX (2010) Amorphous silica nanohybrids: synthesis, properties and applications. Coord Chem Rev 253:2998–3014

    Article  Google Scholar 

  9. Liang S, Hartvickson S, Kozliak E, Zhao JX (2009) Effect of amorphous silica nanomatrix on kinetics of metallation of encapsulated porphyrin molecules. J Phys Chem C 113:19046–19054

    Article  CAS  Google Scholar 

  10. Xu S, Hartvickson S, Zhao JX (2008) Engineering of SiO2-Au-SiO2 sandwich nanoaggregates using a building block: single, double and triple cores for enhancement of near infrared fluorescence. Langmuir 24(14):7492–7499

    Article  CAS  Google Scholar 

  11. Zhang Q, Matsuzaki I, Chatterjee S, Fisher AB (2005) Activation of endothelial NADPH oxidase during normoxic lung ischemia is KATP channel dependent. Am J Physiol Lung Cell Mol Physiol 289:954–961

    Article  Google Scholar 

  12. Wan R, Mo Y, Zhang X, Chien S, Tollerud DJ, Zhang Q (2008) Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: the role of oxidative stress and protein tyrosine kinase activation. Toxicol Appl Pharmacol 233:276–285

    Article  CAS  Google Scholar 

  13. Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  14. Carmichael J, Degraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semi-automated colorimetric assay: assessment of chemo sensitivity testing. Cancer Res 47:936–942

    CAS  Google Scholar 

  15. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin WL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185

    Article  CAS  Google Scholar 

  16. Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ (2006) The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 92:456–463

    Article  CAS  Google Scholar 

  17. Jin Y, Kannan S, Wu M, Zhao JX (2007) Toxicity of luminescent silica nanoparticles to living cells. Chem Res Toxicol 20:1126–1133

    Article  CAS  Google Scholar 

  18. Fröhlich E, Samberger C, Kueznik T, Absenger M, Roblegg E, Zimmer A, Pieber TR (2009) Cytotoxicity of nanoparticles independent from oxidative stress. J Toxicol Sci 34:363–375

    Article  Google Scholar 

  19. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  20. Olive PL, Wlodek D, Durand RE, Banáth JP (1992) Factors influencing DNA migration from individual cells subjected to gel electrophoresis. Exp Cell Res 198:159–267

    Article  Google Scholar 

  21. Czene S, Testa E, Nygren J, Belyaev I, Harms-Ringdahl M (2002) DNA fragmentation and morphological changes in apoptotic human lymphocytes. Biochem Biophys Res Commun 294:872–878

    Article  CAS  Google Scholar 

  22. Al-Mehdi AB, Zhao G, Dodia C, Tozawa K, Costa K, Muzykanotv V, Ross C, Blecha F, Dinauer M, Fisher AB (1998) Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Circ Res 83:730–737

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation Grants CHE-0911472 and EPS-0814442.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhao, Y., Jin, Y., Hanson, A., Wu, M., Zhao, J.X. (2013). Methods for Studying Toxicity of Silica-Based Nanomaterials to Living Cells. In: Rosenthal, S., Wright, D. (eds) NanoBiotechnology Protocols. Methods in Molecular Biology, vol 1026. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-468-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-468-5_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-467-8

  • Online ISBN: 978-1-62703-468-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics