Skip to main content

Identification and Characterization of Cyclic Nucleotide Phosphodiesterases

  • Protocol
  • First Online:
Cyclic Nucleotide Signaling in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1016))

Abstract

Cyclic nucleotide phosphodiesterases regulate cellular levels of small molecule second messengers that control important biological processes in all kingdoms of life. Identifying and characterizing these enzymes is necessary for basic research and pharmaceutical applications. Here, we describe the use of thin layer chromatography to analyze cellular extracts or purified proteins for cyclic nucleotide phosphodiesterase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Butcher RW, Sutherland EW (1962) Adenosine 3′,5′-phosphate in biological materials. I. purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J Biol Chem 237:1244–1250

    PubMed  CAS  Google Scholar 

  2. Charbonneau H, Beier N, Walsh KA, Beavo JA (1986) Identification of a conserved domain among cyclic nucleotide phosphodiesterases from diverse species. Proc Natl Acad Sci USA 83:9308–9312

    Article  PubMed  CAS  Google Scholar 

  3. Chen CN, Denome S, Davis RL (1986) Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila Dunce+ gene, the structural gene for cAMP phosphodiesterase. Proc Natl Acad Sci USA 83:9313–9317

    Article  PubMed  CAS  Google Scholar 

  4. Sass P, Field J, Nikawa J, Toda T, Wigler M (1986) Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 83:9303–9307

    Article  PubMed  CAS  Google Scholar 

  5. Beavo JA, Reifsnyder DH (1990) Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci 11:150–155

    Article  PubMed  CAS  Google Scholar 

  6. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  PubMed  CAS  Google Scholar 

  7. Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–34

    Article  PubMed  CAS  Google Scholar 

  8. Christen M, Christen B, Folcher M, Schauerte A, Jenal U (2005) Identification and characterization of a cyclic di-GMP specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280:30829–37

    Article  PubMed  CAS  Google Scholar 

  9. Rao F, See RY, Zhang D, Toh DC, Ji Q, Liang ZX (2010) YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J Biol Chem 285:473–482

    Article  PubMed  CAS  Google Scholar 

  10. Tamayo R, Tischler AD, Camilli A (2005) The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J Biol Chem 280:33324–30

    Article  PubMed  CAS  Google Scholar 

  11. Szmidt-Jaworska A, Jaworska K, Kopcewicz J (2008) Involvement of cyclic GMP in phytochrome-controlled flowering of pharbitis nil. J Plant Physiol 165:858–867

    Article  PubMed  CAS  Google Scholar 

  12. Teng Y, Xu W, Ma M (2010) cGMP is required for seed germination in Arabidopsis thaliana. J Plant Physiol 167:885–889

    Article  PubMed  CAS  Google Scholar 

  13. Abel S, Nurnberger T, Ahnert V, Krauss G, Glund K (2000) Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiol 122:543–552

    Article  PubMed  CAS  Google Scholar 

  14. Chen J, Yoshida T, Bitensky MW (2008) Light-induced translocation of cyclic-GMP phosphodiesterase on rod disc membranes in rat retina. Mol Vis 14:2509–2517

    PubMed  CAS  Google Scholar 

  15. Schenk T, Breel GJ, Koevoets P, van den Berg S, Hogenboom AC et al (2003) Screening of natural products extracts for the presence of phosphodiesterase inhibitors using liquid chromatography coupled online to parallel biochemical detection and chemical characterization. J Biomol Screen 8:421–429

    Article  PubMed  CAS  Google Scholar 

  16. Temkitthawon P, Viyoch J, Limpeanchob N, Pongamornkul W, Sirikul C, Kumpila A, Suwanborirux K, Ingkaninan K (2008) Screening for phosphodiesterase inhibitory activity of Thai medicinal plants. J Ethnopharmacol 119:214–217

    Article  PubMed  Google Scholar 

  17. Bar HP, Hechter O (1969) Adenyl cyclase assay in fat cell ghosts. Anal Biochem 29:476–489

    Article  PubMed  CAS  Google Scholar 

  18. Randerath K, Randerath E (1964) Ion-exchange chromatography of nucleotides on poly-(ethyleneimine)-cellulose thin layers. J Chromatogr 16:111–125

    Article  PubMed  CAS  Google Scholar 

  19. Riegel JA, Maddrell SH, Farndale RW, Caldwell FM (1998) Stimulation of fluid secretion of malpighian tubules of Drosophila melanogaster meig. by cyclic nucleotides of inosine, cytidine, thymidine and uridine. J Exp Biol 201:3411–3418

    PubMed  CAS  Google Scholar 

  20. Bressan RA, Ross CW (1976) Attempts to detect cyclic adenosine 3′:5′-monophosphate in higher plants by three assay methods. Plant Physiol 57:29–37

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Purcell, E.B., Tamayo, R. (2013). Identification and Characterization of Cyclic Nucleotide Phosphodiesterases. In: Gehring, C. (eds) Cyclic Nucleotide Signaling in Plants. Methods in Molecular Biology, vol 1016. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-441-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-441-8_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-440-1

  • Online ISBN: 978-1-62703-441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics