Skip to main content

Contribution of CE to the Analysis of Protein or Peptide Biomarkers

  • Protocol
  • First Online:
Capillary Electrophoresis of Biomolecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 984))

Abstract

Biomarker analysis is pivotal for disease diagnosis and one important class of biomarkers is constituted by proteins and peptides. This review focuses on protein and peptide analyses from biological fluids performed by capillary electrophoresis. The various strategies that have been reported to prevent difficulties due to the handling of real samples are described. Innovative techniques to overcome the complexity of the sample, to prevent the adsorption of the analytes on the inner capillary wall, and to increase the sensibility of the analysis are summarized and illustrated by different applications. To fully illustrate the contribution of CE to the analysis of biomarkers from human sample, two detailed protocols are given: the analysis from CSF of five amyloid peptide, biomarkers of the Alzheimer disease, and the analysis of sialoforms of transferrin from human serum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkinson AJ, Wayne A et al (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  2. Chen R, Jin Z, Colón LA (1996) Analysis of tear fluid by CE/LIF: a noninvasive approach for glucose monitoring. J Capillary Electrophor 3:243–248

    PubMed  CAS  Google Scholar 

  3. Tomosugi N et al (2005) Diagnostic potential of tear proteomic patterns in Sjögren’ssyndrome. J Proteome Res 4:820–825

    Article  PubMed  CAS  Google Scholar 

  4. Zhou L et al (2009) Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res 8:4889–4905

    Article  PubMed  CAS  Google Scholar 

  5. Van Eijk HMH et al (1999) Automated isolation of high-purity plasma albumin for isotope ratio measurements. J Chromatogr B 731:199–205

    Article  Google Scholar 

  6. Kakehi K et al (2001) Capillary electrophoresis of sialic acid-containing glycoprotein. Effect of the heterogeneity of carbohydrate chains on glycoform separation using an alpha 1-acid glycoprotein as a model. Anal Chem 73:2640–2647

    Article  PubMed  CAS  Google Scholar 

  7. Valcárcel M, Arce L, Ríos A (2001) Coupling continuous separation techniques to capillary electrophoresis. J Chromatogr A 924:3–30

    Article  PubMed  Google Scholar 

  8. Guzman NA, Trebilcock MA, Advis JP (1990) Paper presented at the First Annual Conference on Capillary Electrophoresis. Frederick, Maryland, October 15–16, Abstract no. 12.

    Google Scholar 

  9. Guzman NA, Trebilcock MA, Advis JP (1991) The Use of a Concentration Step to Collect Urinary Components Separated by Capillary Electrophoresis and Further Characterization of Collected Analytes by Mass Spectrometry. J Liq Chromatogr 14:997–1015

    Article  CAS  Google Scholar 

  10. Dalluge J, Sander LC (1998) Precolumn Affinity Capillary Electrophoresis for the Identification of Clinically Relevant Proteins in Human Serum: Application to Human Cardiac Troponin I. Anal Chem 70:5339–5343

    Article  PubMed  CAS  Google Scholar 

  11. Peoples MC, Karnes HT (2008) Microfluidic Capillary System for Immunoaffinity Separations of C-Reactive Protein in Human Serum and Cerebrospinal Fluid. Anal Chem 80:3853–3858

    Article  PubMed  CAS  Google Scholar 

  12. Yang YZ, Boysen RI, Hearn MTW (2006) Optimization of field-amplified sample injection for analysis of peptides by capillary electrophoresis−mass spectrometry. Anal Chem 78:4752–4758

    Article  PubMed  CAS  Google Scholar 

  13. Armenta J et al (2007) Coupled affinity-hydrophobic monolithic column for on-line removal of immunoglobulin G. preconcentrated of low abundance proteins and separation by capillary zone electrophoresis. J Chromatogr A 1148:115–122

    Article  PubMed  CAS  Google Scholar 

  14. Kaiser T et al (2004) Capillary electrophoresis coupled to mass spectrometer for automated and robust polypeptide determination in body fluids for clinical use. Electrophoresis 25:2044–2055

    Article  PubMed  CAS  Google Scholar 

  15. Ongay S et al (2010) Development of a fast and simple immunochromatographic method to purify alpha 1-acid glycoprotein from serum for analysis of its isoforms by capillary electrophoresis. Anal Chim Acta 663:206–212

    Article  PubMed  CAS  Google Scholar 

  16. Li XM, Zhang F, Zhang SS (2008) Capillary electrophoresis enzyme immunoassay for alpha-fetoprotein and thyroxine in human serum with electrochemical detection. J Sep Sci 31:336–340

    Article  PubMed  CAS  Google Scholar 

  17. Guzman NA et al (2003) Improved solid-phase microextraction device for use in on-line immunoaffinity capillary electrophoresis. Electrophoresis 24:3718–3727

    Article  PubMed  CAS  Google Scholar 

  18. Amundsen LK, Sirén H (2007) Immunoaffinity CE in clinical analysis of body fluids and tissues. Electrophoresis 28:99–113

    Article  PubMed  CAS  Google Scholar 

  19. Van der Veen M, Norde W, Stuart MC (2004) Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme. Colloids Surf B Biointerfaces 35:33–40

    Article  PubMed  Google Scholar 

  20. Gray JJ et al (2004) the interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol 14:110–115

    CAS  Google Scholar 

  21. Malmsten M et al (1998) Formation of Adsorbed Protein Layers. J Colloid Interface Sci 207:186–199

    Article  PubMed  CAS  Google Scholar 

  22. Ding HM et al (2005) Silica nanotubes for lysozyme immobilization. J Colloid Interface Sci 290:102–106

    Article  PubMed  CAS  Google Scholar 

  23. Hamrníkova I et al (1999) Binding of proline- and hydroxyproline-containing peptides and proteins to the capillary wall. J Chromatogr A 838:167–177

    Article  Google Scholar 

  24. Verzola B, Gelfi C, Righetti PG (2000) Protein adsorption to the bare silica wall in capillary electrophoresis quantitative study on the chemical composition of the background electrolyte for minimising the phenomenon. J Chromatogr A 868:85–99

    Article  PubMed  CAS  Google Scholar 

  25. Nakanishi K, Sakiyama T, Imamura K (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J BiosciBioeng 91:233–244

    CAS  Google Scholar 

  26. Essa H et al (2007) Influence of pH and ionic strength on the adsorption, leaching and activity of myoglobin immobilized onto ordered mesoporoussilicates. J Mol Catal Enzym 49:61–68

    Article  CAS  Google Scholar 

  27. Lucy CA, MacDonald AM, Gulcev MD (2008) Non-covalent capillary coatings for protein separations in capillary electrophoresis. J Chromatogr A 1184:81–105

    Article  PubMed  CAS  Google Scholar 

  28. Stutz H (2009) Protein attachment onto silica surfaces–a survey of molecular fundamentals, resulting effects and novel preventive strategies in CE. Electrophoresis 30:2032–2061

    Article  PubMed  CAS  Google Scholar 

  29. Weinbauer M, Stutz H (2010) Successive multiple ionic polymer layer coated capillaries in the separation of proteins - Recombinant allergen variants as a case study. Electrophoresis 31:1805–1812

    Article  PubMed  CAS  Google Scholar 

  30. Giordano BC et al (2000) Dynamically-coated capillaries allow for capillary electrophoretic resolution of transferrin sialoforms via direct analysis of human serum. J Chromatogr B 742:79–89

    Article  CAS  Google Scholar 

  31. Lanz C et al (2002) Evaluation and optimization of capillary zone electrophoresis with different dynamic capillary coatings for the determination of carbohydrate-deficient transferrin in human serum. J Chromatogr A 979:43–57

    Article  PubMed  CAS  Google Scholar 

  32. Yang R, Liu Y, Wang Y (2009) Hydroxyethylcellulose-graft-poly (4-vinylpyridine) as a novel, adsorbed coating for protein separation by capillary electrophoresis. Electrophoresis 30:2321–2327

    Article  PubMed  CAS  Google Scholar 

  33. Sassi AP et al (2005) An automated, sheathless capillary electrophoresis-mass spectrometry platform for discovery of biomarkers in human serum. Electrophoresis 26:1500–1512

    Article  PubMed  CAS  Google Scholar 

  34. Liu H et al (2008) A well-defined diblock copolymer of poly-(ethylene oxide)-block-poly (4-vinylpyridine) for separation of basic proteins by capillary zone electrophoresis. Electrophoresis 29:2812–2819

    PubMed  CAS  Google Scholar 

  35. Puerta A et al (2006) Novel adsorptive polyamine coating for enhanced capillary electrophoresis of basic proteins and peptides. J Chromatogr B 838:113–121

    Article  CAS  Google Scholar 

  36. Isemura T, Kitagawa F, Otsuka K (2009) Separation of complex mixtures of fluorobenzoic acids by capillary electrophoresis. J Sep Sci 32:381–387

    Article  PubMed  CAS  Google Scholar 

  37. Mischak H, Schanstra JP (2011) CE-MS in biomarker discovery, validation, and clinical application. Proteomics Clin Appl 5:9–23

    Article  PubMed  CAS  Google Scholar 

  38. Szökő E, Tábi T (2010) Analysis of biological samples by capillary electrophoresis with laser induced fluorescence detection. J Pharm Biomed Anal 53:1180–1192

    Article  PubMed  Google Scholar 

  39. Breadmore MC et al (2011) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2008–2010). Electrophoresis 32:127–148

    Article  PubMed  CAS  Google Scholar 

  40. Mala Z et al (2011) Contemporary sample stacking in analytical electrophoresis. Electrophoresis 32:116–126

    Article  PubMed  CAS  Google Scholar 

  41. Chen Y et al (2009) Assay of bradykinin metabolites in human body fluids by CE-LIF coupled with transient ITP preconcentration. Electrophoresis 30:2300–2306

    Article  PubMed  CAS  Google Scholar 

  42. Yang WC, Yeung ES, Schmerr MJ (2005) Detection of prion protein using a capillary electrophoresis-based competitive immunoassay with laser-induced fluorescence detection and cyclodextrin-aided separation. Electrophoresis 26:1751–1759

    Article  PubMed  CAS  Google Scholar 

  43. Babu S, Chung BC, Lho DS, Yoo YS (2006) Capillary electrophoretic competitive immunoassay with laser-induced fluorescence detection for methionine-enkephalin. JChromatogr 1111:133–138

    Article  CAS  Google Scholar 

  44. Verpillot R et al (2011) Analysis of amyloid-β peptides in cerebrospinal fluid samples by capillary electrophoresis coupled with LIF detection. AnalChem 83:1696–1703

    CAS  Google Scholar 

  45. Tu J et al (2003) Application of multiplexed capillary electrophoresis with laser-induced fluorescence (MCE-LIF) detection for the rapid measurement of endogenous extracellular signal-regulated protein kinase (ERK) levels in cell extracts. J Chromatogr B 789:323–335

    Article  CAS  Google Scholar 

  46. Chen Y, Xu L, Lin J, Chen G (2008) Assay of bradykinin-related peptides in human body fluids using capillary electrophoresis with laser-induced fluorescence detection. Electro-phoresis 29:1302–1307

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This review’s writing was supported by the European Union’s NADINE project under Contract No. 246513. François de l’Escaille and Jean-Bernard Falmagne are employees of Analis s.a. Belgium. Analis s.a. is producer of CEofix™ NTMP and CEofix™ CDT kits and editor of the PHoEBuS software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Taverna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mesbah, K., Verpillot, R., de l’Escaille, F., Falmagne, J.B., Taverna, M. (2013). Contribution of CE to the Analysis of Protein or Peptide Biomarkers. In: Volpi, N., Maccari, F. (eds) Capillary Electrophoresis of Biomolecules. Methods in Molecular Biology, vol 984. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-296-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-296-4_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-295-7

  • Online ISBN: 978-1-62703-296-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics