Skip to main content

Molecular Methods of Virus Detection in Lymphoma

  • Protocol
  • First Online:
Lymphoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 971))

Abstract

The herpesviruses Epstein-Barr virus (EBV) and human herpesvirus 8 and the retrovirus human T-cell leukemia virus type 1 are directly implicated in the pathogenesis of lymphoma and leukemia in man. EBV is associated with an expanding spectrum of lymphomas and it would appear likely that additional, possibly novel, viruses will be implicated in lymphoma pathogenesis in the future. This chapter describes techniques that may be useful in the analysis of viruses and lymphoma including a standard EBV EBER in situ hybridization assay and a degenerate PCR assay for detection of novel herpesviruses. Lastly, a method for analysis of next-generation sequences in the quest for novel viruses is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703

    Article  PubMed  CAS  Google Scholar 

  2. Dojcinov SD, Venkataraman G, Pittaluga S et al (2011) Age-related EBV-associated lymphoproliferative disorders in the Western population: a spectrum of reactive lymphoid hyperplasia and lymphoma. Blood 117:4726–4735

    Article  PubMed  CAS  Google Scholar 

  3. Jarrett RF (2006) Viruses and lymphoma/leukaemia. J Pathol 208:176–186

    Article  PubMed  CAS  Google Scholar 

  4. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 77:7415–7419

    Article  PubMed  CAS  Google Scholar 

  5. Kalyanaraman VS, Sarngadharan MG, Robert-Guroff M, Miyoshi I, Golde D, Gallo RC (1982) A new subtype of human T-cell leukemia virus (HTLV-II) associated with a T-cell variant of hairy cell leukemia. Science 218:571–573

    Article  PubMed  CAS  Google Scholar 

  6. Chang Y, Cesarman E, Pessin MS et al (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869

    Article  PubMed  CAS  Google Scholar 

  7. Rickinson AB, Kieff E (2007) In: Knipe DM, Howley PM (eds.), Epstein-Barr virus. Fields virology. Lippincott Williams & Wilkins: Philadelphia, pp. 2655–2700

    Google Scholar 

  8. Allander T, Andreasson K, Gupta S et al (2007) Identification of a third human polyomavirus. J Virol 81:4130–4136

    Article  PubMed  CAS  Google Scholar 

  9. Gaynor AM, Nissen MD, Whiley DM et al (2007) Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog 3:e64

    Article  PubMed  Google Scholar 

  10. Palacios G, Druce J, Du L et al (2008) A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med 358:991–998

    Article  PubMed  CAS  Google Scholar 

  11. Wilson KS, Gallagher A, Freeland JM, Shield LA, Jarrett RF (2006) Viruses and Hodgkin lymphoma: No evidence of polyomavirus genomes in tumor biopsies. Leuk Lymphoma 47:1315–1321

    Article  PubMed  CAS  Google Scholar 

  12. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100

    Article  PubMed  CAS  Google Scholar 

  13. Reyes GR, Kim JP (1991) Sequence-independent, single-primer amplification (SISPA) of complex DNA populations. Mol Cell Probes 5:473–481

    Article  PubMed  CAS  Google Scholar 

  14. Allander T, Emerson SU, Engle RE, Purcell RH, Bukh J (2001) A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci USA 98:11609–11614

    Article  PubMed  CAS  Google Scholar 

  15. Jarrett RF, Johnson D, Wilson KS, Gallagher A (2006) Molecular methods for virus discovery. Dev Biol (Basel) 123:77–88

    CAS  Google Scholar 

  16. Milne I, Bayer M, Cardle L et al (2010) Tablet–next generation sequence assembly visualization. Bioinformatics 26:401–402

    Article  PubMed  CAS  Google Scholar 

  17. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  PubMed  CAS  Google Scholar 

  18. Punta M, Coggill PC, Eberhardt RY et al (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  PubMed  CAS  Google Scholar 

  19. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  20. Armstrong AA, Weiss LM, Gallagher A et al (1992) Criteria for the definition of Epstein-Barr virus association in Hodgkin’s disease. Leukemia 6:869–874

    PubMed  CAS  Google Scholar 

  21. Gallagher A, Perry J, Shield L, Freeland J, MacKenzie J, Jarrett RF (2002) Viruses and Hodgkin disease: no evidence of novel herpesviruses in non-EBV-associated lesions. Int J Cancer 101:259–264

    Article  PubMed  CAS  Google Scholar 

  22. Oyola SO, Otto TD, Gu Y et al (2012) Optimizing Illumina Next-Generation Sequencing library preparation for extremely AT-biased genomes. BMC Genomics 13:1

    Article  PubMed  CAS  Google Scholar 

  23. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    PubMed  CAS  Google Scholar 

  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  25. Gulley ML (2001) Molecular diagnosis of Epstein-Barr virus-related diseases. J Mol Diagn 3:1–10

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by Leukaemia Lymphoma Research, the Kay Kendall Leukaemia Fund, and the Medical Research Council. I am grateful to Arjan Diepstra for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth F. Jarrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jarrett, R.F., Gallagher, A., Gatherer, D. (2013). Molecular Methods of Virus Detection in Lymphoma. In: Küppers, R. (eds) Lymphoma. Methods in Molecular Biology, vol 971. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-269-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-269-8_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-268-1

  • Online ISBN: 978-1-62703-269-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics