Skip to main content

Fluorescence Proteins and Time-Lapse Imaging of the Cytoskeleton

  • Protocol
  • First Online:
The Cytoskeleton

Part of the book series: Neuromethods ((NM,volume 79))

  • 1210 Accesses

Abstract

Visualization of cytoskeletal dynamics in real time is of paramount interest in cell biological research. With the aid of fluorescent-cytoskeletal fusion proteins and enhancement of confocal laser scanning microscopes with high-end objectives and cell-incubation chambers, high-resolution time-lapse imaging is nowadays possible for long time periods. However, most of the cytoskeletal dynamics can be detected during short observation periods.

In this chapter, we provide a detailed description for time-lapse imaging of microtubules, neurofilaments, and microfilaments within primary neurons. We use two primary neuronal cell culture systems for the analysis of different aspects of cytoskeletal motion and organization: (1) dissociated dorsal root ganglia, which are highly practical to study cytoskeletal dynamics along their neurites or within the growth cone, and (2) cerebellar slice cultures, which are characterized by their organotypic morphology even after 30 days in vitro. In particular in these slice cultures Purkinje cells exhibit highly dynamic dendritic spines within a functional neuronal network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lascola CD, Nelson DJ, Kraig RP (1998) Cytoskeletal actin gates an C1-channel in neocortical astrocytes. J Neurosci 18:1679–1692

    PubMed  CAS  Google Scholar 

  2. Kuznetsov SA, Langford GM, Weiss DG (1992) Actin-dependent organelle movement in squid axoplasm. Nature 356:722–725

    Article  PubMed  CAS  Google Scholar 

  3. Meller K (1992) Axoplasmic transport of horseradish peroxidase in single neurons of the dorsal root ganglion studied in vitro by microinjection. Cell Tissue Res 270:139–148

    Article  PubMed  CAS  Google Scholar 

  4. Theiss C, Meller K (2002) Microinjected anti-actin antibodies impaired cell-communication in astrocytes in vitro. Exp Cell Res 281:197–204

    Article  PubMed  CAS  Google Scholar 

  5. Giessmann D, Theiss C, Breipohl W et al (2003) Microinjection of anti-actin antibodies impaired gap junctional intercellular communication in lens epithelial cells in vitro. Curr Eye Res 27(3):157–164

    Article  PubMed  Google Scholar 

  6. Naumanen P, Lappalainen P, Hotulainen P (2008) Mechanisms of actin stress fibre assembly. J Microsc 231(3):446–454

    Article  PubMed  CAS  Google Scholar 

  7. Gallo G, Letourneau PC (2004) Regulation of growth cone actin filaments by guidance cues. J Neurobiol 58:92–102

    Article  PubMed  CAS  Google Scholar 

  8. Matus A (2000) Actin-based plasticity in dendritic spines. Science 290:754–758

    Article  PubMed  CAS  Google Scholar 

  9. Foehring D, Brand-Saberi B, Theiss C (2012) VEGF induced growth cone enhancement is diminished by inhibiting tyrosine-residue 1214 of VEGFR-2. Cells Tissues Organs. 196(3):195–205

    Google Scholar 

  10. Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 73:749–789

    Article  PubMed  CAS  Google Scholar 

  11. Theiss C, Meller K (2001) Inhibitory effect of aluminum on the axonal transport of microinjected HRP on DRG neurons in vitro. J Neurocytol 30:59–71

    Article  PubMed  CAS  Google Scholar 

  12. Theiss C, Napirei M, Meller K (2005) Impairment of anterograde and retrograde neurofilament transport after anti-kinesin antibody microinjection in chicken dorsal root ganglia. Eur J Cell Biol 84(1):29–43

    Article  PubMed  CAS  Google Scholar 

  13. Theiss C, Meller K (2002) Aluminum impairs gap junctional intercellular communication between astroglial cells in vitro. Cell Tissue Res 310:143–154

    Article  PubMed  CAS  Google Scholar 

  14. Giessmann D, Theiss C, Meller K (2005) Decreased gap junctional communication in microinjected lens epithelial cells after taxol treatment. Anat Embryol 209:391–400

    Article  PubMed  CAS  Google Scholar 

  15. Sabry JH, O’Connor TP, Evans L et al (1991) Mircrotubule behavior during guidance of pioneer neuron growth cones in situ. J Cell Biol 115:381–395

    Article  PubMed  CAS  Google Scholar 

  16. Miller KE, Joshi HC (1996) Tubulin transport in neurons. J Cell Biol 133:1355–1366

    Article  PubMed  CAS  Google Scholar 

  17. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  18. Chalfie M (1995) Green fluorescent protein. Photochem Photobiol 62:651–656

    Article  PubMed  CAS  Google Scholar 

  19. Haseloff J (1999) GFP variants for multispectral imaging of living cells. Meth Cell Biol 58:139–151

    Article  CAS  Google Scholar 

  20. Meller K (1974) The reaggregation of neurons and their satellite cells in cultures of trypsin-dissociated spinal ganglia. Cell Tissue Res 152:175–183

    Article  PubMed  CAS  Google Scholar 

  21. Gähwiler BH (1981) Morphological differentiation of nerve cells in thin organotypic cultures derived from rat hippocampus and cerebellum. Proc R Soc Biol Sci 2111:287–290

    Article  Google Scholar 

  22. Krah K, Meller K (1999) Axonal and dendritic transport in Purkinje cells of cerebellar slice cultures studied by microinjection of horseradish peroxidase. Cell Tissue Res 295:55–64

    Article  PubMed  CAS  Google Scholar 

  23. Lasek R (1968) Axoplasmic transport in cat dorsal root ganglion cells: as studied with 3H-L-leucine. Brain Res 7:360–377

    Article  PubMed  CAS  Google Scholar 

  24. Lasek R (1970) Axonal transport of proteins in dorsal root ganglion cells of the growing cat: a comparison of growing and mature neurons. Brain Res 20:121–126

    Article  PubMed  CAS  Google Scholar 

  25. McClure WO (1972) Effect of drugs upon axoplasmic transport. Adv Pharmacol Chemother 10:185–220

    Article  CAS  Google Scholar 

  26. Theiss C, Meller K (2000) Taxol impairs anterograde axonal transport of microinjected horseradish peroxidase in dorsal root ganglia neurons in vitro. Cell Tissue Res 299:213–224

    Article  PubMed  CAS  Google Scholar 

  27. Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75

    Article  PubMed  CAS  Google Scholar 

  28. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    Article  PubMed  CAS  Google Scholar 

  29. Kuznetsov SA, Gelfand VI (1986) Bovine brain kinesin is a microtubule-activated ATPase. Proc Natl Acad Sci U S A 83:8530–8534

    Article  PubMed  CAS  Google Scholar 

  30. Susalka SJ, Pfister KK (2000) Cytoplasmic dynein subunit heterogeneity: implications for axonal transport. J Neurocytol 29:819–829

    Article  PubMed  CAS  Google Scholar 

  31. Shea TB, Flanagan LA (2001) Kinesin, dynein and neurofilament transport. Trends Neurosci 24:644–648

    Article  PubMed  CAS  Google Scholar 

  32. Roy S, Coffee P, Smith G et al (2000) Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. J Neurosci 20:6849–6861

    PubMed  CAS  Google Scholar 

  33. Wang L, Ho CI, Sun D et al (2000) Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat Cell Biol 2:137–141

    Article  PubMed  CAS  Google Scholar 

  34. Yabe JT, Chan WKH, Chylinski TM et al (2001) The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation, und maturation. Cell Motil Cytoskeleton 48:61–83

    Article  PubMed  CAS  Google Scholar 

  35. Yabe JT, Chylinski T, Wang FS et al (2001) Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, bundling, and axonal transport rate in growing axonal neurites. J Neurosci 21:2195–2205

    PubMed  CAS  Google Scholar 

  36. Prahlad V, Yoon M, Moir RD et al (1998) Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J Cell Biol 143:159–170

    Article  PubMed  CAS  Google Scholar 

  37. Martys JL, Ho CL, Liem RK et al (1999) Intermediate filaments in motion: observations of intermediate filaments in cells using green fluorescent protein-vimentin. Mol Biol Cell 10:1289–1295

    PubMed  CAS  Google Scholar 

  38. Windoffer R, Leube RE (1999) Detection of cytokeratin dynamics by time-lapse fluorescence microscopy in living cells. J Cell Sci 112:4521–4534

    PubMed  CAS  Google Scholar 

  39. Wang L, Brown A (2001) Rapid intermittent movement of axonal neurofilaments observed by flourescene photobleaching. Mol Biol Cell 12:3257–3267

    PubMed  CAS  Google Scholar 

  40. Hirano A (1991) Cytopathology of amyotrophic lateral sclerosis. In: Rowland LP (ed) Advances in neurology, amyotrophic lateral sclerosis and other motor neuron diseases, vol 56. Raven Press, New York, NY, pp 91–101

    Google Scholar 

  41. Trojanowski JY, Schmidt ML, Shin RW et al (1993) Altered tau and neurofilament proteins in neurodegenerative diseases: diagnostic implications for Alzheimer’s disease and Lewy body dementias. Brain Pathol 3:45–54

    Article  PubMed  CAS  Google Scholar 

  42. Schmidt ML, Martin JA, Lee VMY et al (1996) Convergence of Lewy bodies and neurofibrillary tangles in amygdale neurons of Alzheimer’s disease and Lewy body disorders. Acta Neuropathologica 91:475–481

    Article  PubMed  CAS  Google Scholar 

  43. Katsetos CD, Savory J, Herman MM et al (1990) Neuronal cytoskeletal lesions induced in the CNS by intraventricular and intravenous aluminium maltol in rabbits. Neuropathol Appl Neurobiol 16:511–528

    Article  PubMed  CAS  Google Scholar 

  44. Gilbert MR, Harding BL, Hoffman PN et al (1992) Aluminum-induced neurofilamentous changes in cultured rat dorsal root ganglia explants. J Neurosci 12:1763–1771

    PubMed  CAS  Google Scholar 

  45. Bizzi A, Gambetti P (1986) Phosphorylation of neurofilaments is altered in aluminium intoxication. Acta Neuropathologica 71:154–158

    Article  PubMed  CAS  Google Scholar 

  46. Troncoso JC, Hoffman PN, Griffin JW et al (1985) Aluminum intoxication: a disorder of neurofilament transport in motor neurons. Brain Res 342:172–175

    Article  PubMed  CAS  Google Scholar 

  47. Shea TB, Wheeler E, Jung C (1997) Aluminum inhibits neurofilament assembly, cytoskeletal incorporation, and axonal transport. Dynamic nature of aluminum-induced perikaryal neurofilament accumulations as revealed by subunit turnover. Mol Chem Neuropathol 32:17–39

    Article  PubMed  CAS  Google Scholar 

  48. Ackerley S, Thornhill P, Grierson AJ et al (2003) Neurofilament heavy chain side arm phosphorylation regulates axonal transport of neurofilaments. J Cell Biol 161:489–495

    Article  PubMed  CAS  Google Scholar 

  49. Miller CC, Ackerley S, Brownless J (2002) Axonal transport of neurofilaments in normal and disease states. Cell Mol Life Sci 59:323–330

    Article  PubMed  CAS  Google Scholar 

  50. Cajal SRY (1890) À quelle époque apparaissent les expansions des cellules nerveuses de la moëlle épinière du poulet? Anat Anz 21–22:609–639

    Google Scholar 

  51. Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209–227

    Article  PubMed  CAS  Google Scholar 

  52. Dent EW, Gupton SL, Gertler FB (2011) The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 3(3):pii: a001800. doi:10.1101/cshperspect.a001800

    Article  Google Scholar 

  53. Huber AB, Kolodkin AL, Ginty DD et al (2003) Signaling at the growth cone: ligand–receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 26:509–563

    Article  PubMed  CAS  Google Scholar 

  54. Maskery S, Shinbrot T (2005) Deterministic and stochastic elements of axonal guidance. Annu Rev Biomed Eng 7:187–221

    Article  PubMed  CAS  Google Scholar 

  55. Schaefer AW, Kabir N, Forscher P (2002) Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 158(1):139–152

    Article  PubMed  CAS  Google Scholar 

  56. Geraldo S, Gordon-Weeks PR (2009) Cytoskeletal dynamics in growth-cone steering. J Cell Sci 122:3595–3604

    Article  PubMed  CAS  Google Scholar 

  57. Lowery LA, Van Vactor D (2009) The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 10:332–343

    Article  PubMed  CAS  Google Scholar 

  58. Lamalice L, Houle F, Jourdan G et al (2004) Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 23:434–445

    Article  PubMed  CAS  Google Scholar 

  59. Dickson BJ (2001) Rho GTPases in growth cone guidance. Curr Opin Neurobiol 11(1):103–110

    Article  PubMed  CAS  Google Scholar 

  60. Meyer G, Feldman EL (2002) Signaling mechanisms that regulate actin-based motility processes in the nervous system. J Neurochem 83(3):490–503

    Article  PubMed  CAS  Google Scholar 

  61. Matsumoto T, Mugishima H (2006) Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. J Atheroscler Thromb 13:130–135

    Article  PubMed  CAS  Google Scholar 

  62. Rousseau S, Houle F, Landry J, Huot J (1997) p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15:2169–2177

    Article  PubMed  CAS  Google Scholar 

  63. Rousseau S, Houle F, Hout J (2000) Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells. Trends Cardiovasc Med 10:321–327

    Article  PubMed  CAS  Google Scholar 

  64. Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, Landry J, Huot J (2000) Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 275:10661–10672

    Article  PubMed  CAS  Google Scholar 

  65. Bromberg KD, Iyengar R, He JC (2008) Regulation of neurite outgrowth by Gi/o signalling pathways. Front Biosci 13:4544–4557

    Article  PubMed  CAS  Google Scholar 

  66. Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C (2008) Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol 87:649–667

    Article  PubMed  Google Scholar 

  67. Meller K, Krah K, Theiss C (2005) Dye coupling in Purkinje cells of organotypic slice cultures. Dev Brain Res 160(1):101–105

    Article  CAS  Google Scholar 

  68. Theiss C, Meller K (2010) Microscopic techniques to study cytoskeletal dynamics in neurons. In: Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology, applications and education. Formatex Research Center, Badajoz

    Google Scholar 

  69. Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67

    Article  PubMed  CAS  Google Scholar 

  70. Fifková E, Morales M (1992) Actin matrix of dendritic spines, synaptic plasticity, and long-term potentiation. Int Rev Cytol 139:267–307

    Article  PubMed  Google Scholar 

  71. Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparing both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371

    Article  PubMed  CAS  Google Scholar 

  72. Hu X, Viesselmann C, Nam S et al (2008) Activity-dependent dynamic microtubule invasion of dendritic spines. J Neurosci 28:13094–13105

    Article  PubMed  CAS  Google Scholar 

  73. Jaworski J, Kapitein LC, Gouveia SM (2009) Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61:85–100

    Article  PubMed  CAS  Google Scholar 

  74. Lee KJ, Kim H, Rhyu IJ (2005) The roles of dendritic spine shapes in Purkinje cells. Cerebellum 4:97–104

    Article  PubMed  CAS  Google Scholar 

  75. Hayashi K, Suzuki A, Hirai S, Kurihara Y, Hoogenraad CC, Ohno S (2011) Maintenance of dendritic spine morphology by partitioning-defective 1b through regulation of microtubule growth. J Neurosci 31(34):12094–12103

    Article  PubMed  CAS  Google Scholar 

  76. Hering H, Sheng M (2003) Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. J Neurosci 23:11759–11769

    PubMed  CAS  Google Scholar 

  77. Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887

    Article  PubMed  CAS  Google Scholar 

  78. Newey SE, Velamoor V, Govek EE, Van Aelst L (2005) Rho GTPases, dendritic structure, and mental retardation. J Neurobiol 64:58–74

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Theiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Theiss, C., Meller, K. (2013). Fluorescence Proteins and Time-Lapse Imaging of the Cytoskeleton. In: Dermietzel, R. (eds) The Cytoskeleton. Neuromethods, vol 79. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-266-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-266-7_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-265-0

  • Online ISBN: 978-1-62703-266-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics