Skip to main content

Tandem Lectin Weak Affinity Chromatography for Glycoprotein Enrichment

  • Protocol
  • First Online:
Mass Spectrometry of Glycoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 951))

Abstract

In this chapter we describe the application of lectin weak affinity chromatography (LWAC) for the enrichment of peptides modified by O-linked β-N-acetylglucosamine (O-GlcNAc). O-GlcNAc is a single carbohydrate moiety post-translational modification of intracellular proteins. The stoichiometry of the modification is low and identification of the sites of O-GlcNAc attachment is challenging. To map O-GlcNAc sites we use the approach where a protein sample of interest is digested with trypsin and subjected to LWAC, which employs weak interaction between lectin wheat germ agglutinin and O-GlcNAc. Obtained sample is enriched with O-GlcNAc-modified peptides, which can be identified by means of mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hart GW (1997) Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu Rev Biochem 66:315–335

    Article  CAS  PubMed  Google Scholar 

  2. Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291:2376–2378

    Article  CAS  PubMed  Google Scholar 

  3. Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022

    Article  CAS  PubMed  Google Scholar 

  4. Watson LJ, Facundo HT, Ngoh GA, Ameen M, Brainard RE, Lemma KM, Long BW, Prabhu SD, Xuan YT, Jones SP (2010) O-linked β-N-acetylglucosamine transferase is indispensable in the failing heart. Proc Natl Acad Sci USA 107:17797–17802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cole RN, Hart GW (1999) Glycosylation sites flank phosphorylation sites on synapsin I: O-linked N-acetylglucosamine residues are localized within domains mediating synapsin I interactions. J Neurochem 73:418–428

    Article  CAS  PubMed  Google Scholar 

  6. Greis KD, Gibson W, Hart GW (1994) Site-specific glycosylation of the human cytomegalovirus tegument basic phosphoprotein (UL32) at serine 921 and serine 952. J Virol 68:8339–8349

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Khidekel N, Ficarro SB, Peters EC, Hsieh-Wilson LC (2004) Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci USA 101:13132–13137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nandi A, Sprung R, Barma DK, Zhao Y, Kim SC, Falck JR (2006) Global identification of O-GlcNAc-modified proteins. Anal Chem 78:452–458

    Article  CAS  PubMed  Google Scholar 

  9. Vosseller K, Hansen KC, Chalkley RJ, Trinidad JC, Wells L, Hart GW, Burlingame AL (2005) Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics 5:388–398

    Article  CAS  PubMed  Google Scholar 

  10. Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1:791–804

    Article  CAS  PubMed  Google Scholar 

  11. Chalkley RJ, Thalhammer A, Schoepfer R, Burlingame AL (2009) Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc Natl Acad Sci USA 106:8894–8899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhavanandan VP, Katlic AW (1979) The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J Biol Chem 254:4000–4008

    CAS  PubMed  Google Scholar 

  13. Gallagher JT, Morris A, Dexter TM (1985) Identification of two binding sites for wheat-germ agglutinin on polylactosamine-type oligosaccharides. Biochem J 231:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Neumann D, Kohlbacher O, Lenhof HP, Lehr CM (2002) Lectin-sugar interaction. Calculated versus experimental binding energies. Eur J Biochem 269:1518–1524

    Article  CAS  PubMed  Google Scholar 

  15. Ohlson S, Bergstrom M, Leickt L, Zopf D (1998) Weak affinity chromatography of small saccharides with immobilised wheat germ agglutinin and its application to monitoring of carbohydrate transferase activity. Bioseparation 7:101–105

    Article  CAS  PubMed  Google Scholar 

  16. Vosseller K, Trinidad JC, Chalkley RJ, Specht CG, Thalhammer A, Lynn AJ, Snedecor JO, Guan S, Medzihradszky KF, Maltby DA, Schoepfer R, Burlingame AL (2006) O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol Cell Proteomics 5:923–934

    Article  CAS  PubMed  Google Scholar 

  17. Skorobogatko YV, Deuso J, Adolf-Bergfoyle J, Nowak MG, Gong Y, Lippa CF, Vosseller K (2010) Human Alzheimer’s disease synaptic O-GlcNAc site mapping and iTRAQ expression proteomics with ion trap mass spectrometry. Amino Acids 40:765–779

    Article  PubMed  Google Scholar 

  18. Dauphinee SM, Ma M, Too CK (2005) Role of O-linked beta-N-acetylglucosamine modification in the subcellular distribution of alpha4 phosphoprotein and Sp1 in rat lymphoma cells. J Cell Biochem 96:579–588

    Article  CAS  PubMed  Google Scholar 

  19. Kwak TK, Kim H, Jung O, Lee SA, Kang M, Kim HJ, Park JM, Kim SH, Lee JW (2010) Glucosamine treatment-mediated O-GlcNAc modification of paxillin depends on adhesion state of rat insulinoma INS-1 cells. J Biol Chem 285:36021–36031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Vosseller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ma, Z.Y., Skorobogatko, Y., Vosseller, K. (2013). Tandem Lectin Weak Affinity Chromatography for Glycoprotein Enrichment. In: Kohler, J., Patrie, S. (eds) Mass Spectrometry of Glycoproteins. Methods in Molecular Biology, vol 951. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-146-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-146-2_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-145-5

  • Online ISBN: 978-1-62703-146-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics