Skip to main content

Comparative Genomics-Based Identification and Analysis of Cis-Regulatory Elements

  • Protocol
  • First Online:
Xenopus Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 917))

Abstract

Identification of cis-regulatory elements, such as enhancers and promoters, is very important not only for analysis of gene regulatory networks but also as a tool for targeted gene expression experiments. In this chapter, we introduce an easy but reliable approach to predict enhancers of a gene of interest by comparing mammalian and Xenopus genome sequences, and to examine their activity using a co-transgenesis technique in Xenopus embryos. Since the bioinformatics analysis utilizes publically available web tools, bench biologists can easily perform it without any need for special computing capability. The co-transgenesis assay, which directly uses polymerase chain reaction products, quickly screens for the activity of the candidate elements in a cloning-free manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wasserman WW, Sandelin A (2004) Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5:276–287

    Article  PubMed  CAS  Google Scholar 

  2. Pennacchio LA et al (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444:499–502

    Article  PubMed  CAS  Google Scholar 

  3. Woolfe A et al (2005) Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3:e7

    Article  PubMed  Google Scholar 

  4. Lettice LA et al (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12:1725–1735

    Article  PubMed  CAS  Google Scholar 

  5. Sagai T et al (2004) Phylogenetic conservation of a limb-specific, cis-acting regulator of Sonic hedgehog (Shh). Mamm Genome 15:23–34

    Article  PubMed  CAS  Google Scholar 

  6. Benko S et al (2009) Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet 41:359–364

    Article  PubMed  CAS  Google Scholar 

  7. Fisher S et al (2006) Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science 312:276–279

    Article  PubMed  CAS  Google Scholar 

  8. Visel A et al (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457:854–858

    Article  PubMed  CAS  Google Scholar 

  9. Hellsten U et al (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328:633–636

    Article  PubMed  CAS  Google Scholar 

  10. Kasahara M et al (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719

    Article  PubMed  CAS  Google Scholar 

  11. Canestro C, Yokoi H, Postlethwait JH (2007) Evolutionary developmental biology and genomics. Nat Rev Genet 8:932–942

    Article  PubMed  CAS  Google Scholar 

  12. Ogino H, Fisher M, Grainger RM (2008) Convergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification. Development 135:249–258

    Article  PubMed  CAS  Google Scholar 

  13. Ovcharenko I et al (2004) ECR Browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. Nucleic Acids Res 32:W280–W286

    Article  PubMed  CAS  Google Scholar 

  14. Schwartz S et al (2003) MultiPipMaker and supporting tools: alignments and analysis of multiple genomic DNA sequences. Nucleic Acids Res 31:3518–3524

    Article  PubMed  CAS  Google Scholar 

  15. Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  16. Stathopoulos A, Levine M (2005) Genomic regulatory networks and animal development. Dev Cell 9:449–462

    Article  PubMed  CAS  Google Scholar 

  17. Loots GG, Ovcharenko I (2004) rVISTA 2.0: evolutionary analysis of transcription factor binding sites. Nucleic Acids Res 32:W217–W221

    Article  PubMed  CAS  Google Scholar 

  18. Sandelin A, Wasserman WW, Lenhard B (2004) ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res 32:W249–W252

    Article  PubMed  CAS  Google Scholar 

  19. Portales-Casamar E et al (2010) JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res 38:D105–D110

    Article  PubMed  CAS  Google Scholar 

  20. Sive H, Grainger R, Harland R (2000) Early development of Xenopus laevis—a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  21. Kost TA, Theodorakis N, Hughes SH (1983) The nucleotide sequence of the chick cytoplasmic β-actin gene. Nucleic Acids Res 11:8287–8301

    Article  PubMed  CAS  Google Scholar 

  22. Navratilova P et al (2009) Systematic human/zebrafish comparative identification of cis-regulatory activity around vertebrate developmental transcription factor genes. Dev Biol 327:526–540

    Article  PubMed  CAS  Google Scholar 

  23. Kleinjan DA et al (2006) Long-range downstream enhancers are essential for Pax6 expression. Dev Biol 299:563–581

    Article  PubMed  CAS  Google Scholar 

  24. Xu PX et al (1999) Regulation of Pax6 expression is conserved between mice and flies. Development 126:383–395

    PubMed  CAS  Google Scholar 

  25. Waterhouse AM et al (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  PubMed  CAS  Google Scholar 

  26. Rada-Iglesias A et al (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–283

    Article  PubMed  CAS  Google Scholar 

  27. Noyes MB et al (2008) Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell 133:1277–1289

    Article  PubMed  CAS  Google Scholar 

  28. Lehman CW, Trautman JK, Carroll D (1994) Illegitimate recombination in Xenopus: characterization of end-joined junctions. Nucleic Acids Res 22:434–442

    Article  PubMed  CAS  Google Scholar 

  29. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  30. Ogino H, Ochi H (2009) Resources and transgenesis techniques for functional genomics in Xenopus. Dev Growth Differ 51:387–401

    Article  PubMed  CAS  Google Scholar 

  31. Ogino H, McConnell WB, Grainger RM (2006) High-throughput transgenesis in Xenopus using I-SceI meganuclease. Nat Protoc 1:1703–1710

    Article  PubMed  CAS  Google Scholar 

  32. Kammandel B et al (1999) Distinct cis-essential modules direct the time-space pattern of the Pax6 gene activity. Dev Biol 205:79–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Global COE Program in NAIST (Frontier Biosciences: strategies for survival and adaptation in a changing global environment), Grant-in-Aid for Scientific Research (C) (20579002 and 23570256) from JSPS and Grant-in-Aid for Scientific Research on Innovative Areas (21200064) from MEXT, Japan, to H. Ogino, by Grant-in-Aid for Young Scientists (B) (21770234) from JSPS and Research for Promoting Technological Seeds (A) (10-099) from JST, Japan, to H. Ochi, and by CREST (JST). This work was also supported by NIH grants EY00675, EY017400, EY018000, and RR013221 to R. Grainger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Ogino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ogino, H., Ochi, H., Uchiyama, C., Louie, S., Grainger, R.M. (2012). Comparative Genomics-Based Identification and Analysis of Cis-Regulatory Elements. In: HOPPLER, S., Vize, P. (eds) Xenopus Protocols. Methods in Molecular Biology, vol 917. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-992-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-992-1_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-991-4

  • Online ISBN: 978-1-61779-992-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics