Skip to main content

The Application of Semiconductor Quantum Dots for Enhancing Peptide Desorption, Improving Peak Resolution and Sensitivity of Detection in Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry

  • Protocol
  • First Online:
Nanoparticles in Biology and Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 906))

  • 4550 Accesses

Abstract

The interest in quantum dots (QD) and a number of reported life sciences applications increased dramatically over the last decade. The popularity of QDs stems from better photostability, higher extinction ­co-efficients, and unique optical properties such as superior light absorption. Here we report methods for improving matrix-assisted laser desorption/ionization desorption of crude tryptic protein digests by using CdSe/ZnS QDs. The addition of QDs to the matrix improves the signal-to-noise ratio, peak quality and increases the number of detected peptides and the overall sequence coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruchez M, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  PubMed  CAS  Google Scholar 

  2. JaiswalJK GER, Mattoussi H et al (2004) Use of quantum dots for live cell imaging. Nat Methods 1(1):73–78

    Article  Google Scholar 

  3. Gao XH, Yang LL, Petros JA et al (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16(1):63–72

    Article  PubMed  CAS  Google Scholar 

  4. Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  PubMed  CAS  Google Scholar 

  5. Xing Y, Rao J (2008) Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomark 4(6):307–319

    PubMed  CAS  Google Scholar 

  6. Sukhanova A, Devy M, Venteo L et al (2004) Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal Biochem 324(1):60–67

    Article  PubMed  CAS  Google Scholar 

  7. Xing Y, Chaudry Q, Shen C et al (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2(5):1152–1165

    Article  PubMed  CAS  Google Scholar 

  8. Medintz IL, Clapp AR, Mattoussi H et al (2003) Selfassembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2(9):630–638

    Article  PubMed  CAS  Google Scholar 

  9. Zhang CY, Hu J (2010) Single quantum dot-based nanosensor for multiple DNA detection. Anal Chem 82(5):1921–1927

    Article  PubMed  CAS  Google Scholar 

  10. Ebenstein Y, Gassman N, Kim S et al (2009) Lighting up individual DNA binding proteins with quantum dots. Nano Lett 9(4):1598–1603

    Article  PubMed  CAS  Google Scholar 

  11. Giraud G, Schulze H, Bachmann TT et al (2009) Fluorescence lifetime imaging of quantum dot labeled DNA microarrays. Int J Mol Sci 10(4):1930–1941

    Article  PubMed  CAS  Google Scholar 

  12. Liang RQ, Li W, Li Y et al (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 33(2):e17

    Article  PubMed  Google Scholar 

  13. Shingyoji M, Gerion D, Pinkel D et al (2005) Quantum dots-based reverse phase protein microarray. Talanta 67(3):472–478

    Article  PubMed  CAS  Google Scholar 

  14. Zajac A, Song D, Qian W et al (2007) Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf B Biointerfaces 58(2):309–314

    Article  PubMed  CAS  Google Scholar 

  15. Gokarna A, Jin LH, Hwang JS et al (2008) Quantum dot-based protein micro- and nanoarrays for detection of prostate cancer biomarkers. Proteomics 8(9):1809–1818

    Article  PubMed  CAS  Google Scholar 

  16. Han MY, Gao XH, Su JZ et al (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  PubMed  CAS  Google Scholar 

  17. Zhao Y, Zhao X, Tang B et al (2010) Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free DNA detection. Adv Funct Mater 20(6):976–982

    Article  Google Scholar 

  18. Bae WK, Kwak J, Lim J et al (2009) Deep blue light-emitting diodes based on Cd1-xZnxS@ZnS quantum dots. Nanotechnology 20(7):075202

    Article  Google Scholar 

  19. Cho KS, Lee EK, Joo WJ et al (2009) High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat Photonics 3:341–345

    Article  CAS  Google Scholar 

  20. Sun Q, Wang YA, Li LS et al (2007) Bright, multicoloured light-emitting diodes based on quantum dots. Nat Photonics 1:717–722

    Article  CAS  Google Scholar 

  21. Beard MC, Ellingson RJ (2008) Multiple exciton generation in semiconductor nanocrystals: toward efficient solar energy conversion. Laser Photonics Rev 2(5):377–399

    Article  CAS  Google Scholar 

  22. Sablon KA, Little JW, Mitin V et al (2011) Strong enhancement of solar cell efficiency due to quantum dots with built-in charge. Nano Lett 11(6):2311–2317

    Article  PubMed  CAS  Google Scholar 

  23. Ardalan P, Brennan TP, Lee HB et al (2011) Effects of self-assembled monolayers on solid-state CdS quantum dot sensitized solar cells. ACS Nano 5(2):1495–1504

    Article  PubMed  CAS  Google Scholar 

  24. Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112(48):18737–18753

    CAS  Google Scholar 

  25. Nizamoglu S, Ozel T, Sari E et al (2007) White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology 18:065709

    Article  Google Scholar 

  26. Yeh DM, Huang CF, Lu YC et al (2008) White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green twocolor light-emitting diode. Appl Phys Lett 92(9):09112

    Article  Google Scholar 

  27. Noone KM, Ginger DS (2009) Doping for speed: colloidal nanoparticles for thin-film optoelectronics. ACS Nano 3(2):261–265

    Article  PubMed  CAS  Google Scholar 

  28. Lee HJ, Yum JH, Leventis HC et al (2008) CdSe quantum dot-sensitized solar cells exceeding efficiency 1 % at full-sun intensity. J Phys Chem B 112(30):11600–11608

    CAS  Google Scholar 

  29. Kongkanand A, Tvrdy K, Takechi K et al (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe  −  TiO2 architecture. J Am Chem Soc 130(12):4007–4015

    Article  PubMed  CAS  Google Scholar 

  30. Tanaka K, Waki H, Ido Y et al (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2(8):151–153

    Article  CAS  Google Scholar 

  31. Tanaka K (2003) The origin of macromolecule ionization by laser irradiation. Angew Chem Int Ed Engl 42(33):3860–3870

    Article  PubMed  Google Scholar 

  32. Wei J, Buriak JM, Siuzdak G (1999) Desorption-ionization mass spectrometry on porous silicon. Nature 399(6733):243–246

    Article  PubMed  CAS  Google Scholar 

  33. Thomas JJ, Shen ZX, Crowell JE et al (2001) Desorption/ionization on silicon (DIOS): a diverse mass spectrometry platform for protein characterization. Proc Natl Acad Sci U S A 98(9):4932–4937

    Article  PubMed  CAS  Google Scholar 

  34. Lin YS, Chen YC (2002) Laser desorption/ionization time-of-flight mass spectrometry on sol-gel derived 2,5-dihydroxybenzoic acid film. Anal Chem 74(22):5793–5798

    Article  PubMed  CAS  Google Scholar 

  35. Chen WY, Chen YC (2003) Reducing the alkali cation adductions of oligonucleotides using sol-gel-assisted laser desorption/­ionization mass spectrometry. Anal Chem 75(16):4223–4228

    Article  PubMed  CAS  Google Scholar 

  36. Lin YS, Yang CH, Chen YC (2004) Glass-chip-based sample preparation and on-chip trypic digestion for matrix-assisted laser desorption/ionization mass spectrometric analysis using a sol-gel/2,5-dihydroxybenzoic acid hybrid matrix. Rapid Commun Mass Spectrom 18(3):313–318

    Article  PubMed  CAS  Google Scholar 

  37. Chen CT, Chen YC (2004) Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun Mass Spectrom 18(17):1956–1964

    Article  PubMed  CAS  Google Scholar 

  38. Chen CT, Chen YC (2004) Molecularly imprinted TiO2-matrix-assisted laser desorption/ionization mass spectrometry for selectively detecting alpha-cyclodextrin. Anal Chem 76(5):1453–1457

    Article  PubMed  CAS  Google Scholar 

  39. Tang N, Tornatore P, Weinberger SR (2004) Current developments in SELDI affinity technology. Mass Spectrom Rev 23(1):34–44

    Article  PubMed  CAS  Google Scholar 

  40. Seibert V, Wiesner A, Buschmann T et al (2004) Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI TOF-MS) and ProteinChip technology in proteomics research. Pathol Res Pract 200(2):83–94

    Article  PubMed  CAS  Google Scholar 

  41. Berkenkamp S, Menzel C, Karas M et al (1997) Performance of infrared matrix-assisted laser desorption/ionization mass spectrometry with lasers emitting in the 3 um wavelength range. Rapid Commun Mass Spectrom 11(13):1399–1406

    Article  CAS  Google Scholar 

  42. Kinumi T, Saisu T, Takayama M et al (2000) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an inorganic particle matrix for small molecule analysis. J Mass Spectrom 35(3):417–422

    Article  PubMed  CAS  Google Scholar 

  43. Okuno S, Nakano M, Matsubayashi G et al (2004) Reduction of organic dyes in matrix-assisted laser desorption/ionization and desorption/ionization on porous silicon. Rapid Commun Mass Spectrom 18(23):2811–2817

    Article  PubMed  CAS  Google Scholar 

  44. Shrivas K, Wu HF (2008) Modified silver nanoparticle as a hydrophobic affinity probe for analysis of peptides and proteins in ­biological samples by using liquid-liquid microextraction coupled to AP-MALDI-ion trap and MALDI-TOF mass spectrometry. Anal Chem 80(7):2583–2589

    Article  PubMed  CAS  Google Scholar 

  45. Shrivas K, Wu HF (2008) Applications of silver nanoparticles capped with different functional groups as the matrix and affinity probes in surface-assisted laser desorption/ionization time-of-flight and atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry for rapid analysis of sulfur drugs and biothiols in human urine. Rapid Commun Mass Spectrom 22(18):2863–2872

    Article  PubMed  CAS  Google Scholar 

  46. Sudhir PR, Shrivas K, Zhou ZC et al (2008) Single drop microextraction using silver nanoparticles as electrostatic probes for peptide analysis in atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry and comparison with gold electrostatic probes and silver hydrophobic probes. Rapid Commun Mass Spectrom 22(19):3076–3086

    Article  PubMed  CAS  Google Scholar 

  47. Honda A, Sonobe H, Ogata A et al (2005) Improved method of the MALDI-TOF analysis of DNA with nanodot sample target plate. Chem Commun 42:5340–5342

    Article  Google Scholar 

  48. Seino T, Sato H, Yamamoto A et al (2007) Matrix-free laser desorption/ionization-mass spectrometry using self-assembled germanium nanodots. Anal Chem 79(13):4827–4832

    Article  PubMed  CAS  Google Scholar 

  49. Bailes J, Vidal L, Ivanov DA et al (2009) Quantum dots improve peptide detection in MALDI MS in a size dependent manner. Nanobiotechnology 7:10

    Article  Google Scholar 

  50. Shrivas K, Kailasa SK, Wu HF (2009) Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS. Proteomics 9(10):2656–2667

    Article  PubMed  CAS  Google Scholar 

  51. Liu CW, Chien MW, Chen GF et al (2011) Quantum dot enhancement of peptide detection by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 83(17):6593–6600

    Article  PubMed  CAS  Google Scholar 

  52. Finehout EJ, Cantor JR, Le KH (2005) Kinetic characterization of sequencing grade modified trypsin. Proteomics 5(9):2319–2321

    Article  PubMed  CAS  Google Scholar 

  53. Rivers J, Simpson DM, Robertson DH et al (2007) Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol Cell Proteomics 6(8):1416–1427

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Soloviev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bailes, J., Soloviev, M. (2012). The Application of Semiconductor Quantum Dots for Enhancing Peptide Desorption, Improving Peak Resolution and Sensitivity of Detection in Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry. In: Soloviev, M. (eds) Nanoparticles in Biology and Medicine. Methods in Molecular Biology, vol 906. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-953-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-953-2_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-952-5

  • Online ISBN: 978-1-61779-953-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics