Skip to main content

The Application of Transgenic Mice for Therapeutic Antibody Discovery

  • Protocol
  • First Online:
Antibody Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 901))

Abstract

In 2006, panitumumab, the first fully human antibody generated from transgenic mice, was approved for clinical use by the US Food and Drug Administration (FDA). Since then, a further seven such antibodies have been approved. In this chapter, we discuss how transgenic mice technologies can provide a powerful platform for creating human therapeutic antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ganesh K, Neuberger MS (2011) The relationship between hypothesis and experiment in unveiling the mechanisms of antibody gene diversification. FASEB J 25:1123–1132

    Article  PubMed  CAS  Google Scholar 

  2. Neuberger MS (2008) Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 86:124–132

    Article  PubMed  CAS  Google Scholar 

  3. Cyster JG (2010) Shining a light on germinal center B cells. Cell 143:503–505

    Article  PubMed  CAS  Google Scholar 

  4. Alt FW, Blackwell TK, Yancopoulos GD (1985) Immunoglobulin genes in transgenic mice. Trends Genet 1:231–236

    Article  CAS  Google Scholar 

  5. Storb U, Peters A, Klotz E et al (1998) Immunoglobulin transgenes as targets for somatic hypermutation. Int J Dev Biol 42: 977–982

    PubMed  CAS  Google Scholar 

  6. Bruggemann M, Caskey HM, Teale C et al (1989) A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad Sci U S A 86:6709–6713

    Article  PubMed  CAS  Google Scholar 

  7. Taylor LD, Carmack CE, Schramm SR et al (1992) A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins. Nucleic Acids Res 20: 6287–6295

    Article  PubMed  CAS  Google Scholar 

  8. Lonberg N, Taylor LD, Harding FA et al (1994) Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368:856–859

    Article  PubMed  CAS  Google Scholar 

  9. Green LL, Hardy MC, Maynard-Currie CE et al (1994) Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 7:13–21

    Article  PubMed  CAS  Google Scholar 

  10. Fishwild DM, O’Donnell SL, Bengoechea T et al (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14: 845–851

    Article  PubMed  CAS  Google Scholar 

  11. Mendez MJ, Green LL, Corvalan JR et al (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15:146–156

    Article  PubMed  CAS  Google Scholar 

  12. Nicholson IC, Zou X, Popov AV et al (1999) Antibody repertoires of four- and five-feature translocus mice carrying human immunoglobulin heavy chain and kappa and lambda light chain yeast artificial chromosomes. J Immunol 163:6898–6906

    PubMed  CAS  Google Scholar 

  13. Tomizuka K, Yoshida H, Uejima H et al (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16:133–143

    Article  PubMed  CAS  Google Scholar 

  14. Tomizuka K, Shinohara T, Yoshida H et al (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci U S A 97:722–727

    Article  PubMed  CAS  Google Scholar 

  15. Davis MM (2004) The evolutionary and structural ‘logic’ of antigen receptor diversity. Semin Immunol 16:239–243

    Article  PubMed  CAS  Google Scholar 

  16. Xu JL, Davis MM (2000) Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13:37–45

    Article  PubMed  CAS  Google Scholar 

  17. Scott CT (2007) Mice with a human touch. Nat Biotechnol 25:1075–1077

    Article  PubMed  CAS  Google Scholar 

  18. Khamlichi AA, Pinaud E, Decourt C et al (2000) The 3′ IgH regulatory region: a complex structure in a search for a function. Adv Immunol 75:317–345

    Article  PubMed  CAS  Google Scholar 

  19. Staudt LM, Lenardo MJ (1991) Immunoglobulin gene transcription. Annu Rev Immunol 9:373–398

    Article  PubMed  CAS  Google Scholar 

  20. Shaw AC, Mitchell RN, Weaver YK et al (1990) Mutations of immunoglobulin transmembrane and cytoplasmic domains: effects on intracellular signaling and antigen presentation. Cell 63: 381–392

    Article  PubMed  CAS  Google Scholar 

  21. Blum JH, Stevens TL, DeFranco AL (1993) Role of the mu immunoglobulin heavy chain transmembrane and cytoplasmic domains in B cell antigen receptor expression and signal transduction. J Biol Chem 268:27236–27245

    PubMed  CAS  Google Scholar 

  22. DeFranco AL, Richards JD, Blum JH et al (1995) Signal transduction by the B-cell antigen receptor. Ann N Y Acad Sci 766:195–201

    Article  PubMed  CAS  Google Scholar 

  23. Zou YR, Muller W, Gu H et al (1994) Cre-loxP-mediated gene replacement: a mouse strain producing humanized antibodies. Curr Biol 4:1099–1103

    Article  PubMed  CAS  Google Scholar 

  24. Valenzuela DM, Murphy AJ, Frendewey D et al (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21: 652–659

    Article  PubMed  CAS  Google Scholar 

  25. Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774

    Article  PubMed  CAS  Google Scholar 

  26. Bradbury AR, Sidhu S, Dubel S et al (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29: 245–254

    Article  PubMed  CAS  Google Scholar 

  27. Ponsel D, Neugebauer J, Ladetzki-Baehs K et al (2011) High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 16: 3675–3700

    Article  PubMed  CAS  Google Scholar 

  28. Prusiner SB, Groth D, Serban A et al (1993) Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc Natl Acad Sci U S A 90:10608–10612

    Article  PubMed  CAS  Google Scholar 

  29. Williamson RA, Peretz D, Smorodinsky N et al (1996) Circumventing tolerance to generate autologous monoclonal antibodies to the prion protein. Proc Natl Acad Sci U S A 93: 7279–7282

    Article  PubMed  CAS  Google Scholar 

  30. Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33:492–503

    Article  PubMed  CAS  Google Scholar 

  31. Verthelyi D, Wang V (2010) Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins. PLoS One 5:e15252

    Article  PubMed  CAS  Google Scholar 

  32. Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94: 12297–12302

    Article  PubMed  CAS  Google Scholar 

  33. Lonberg N (2008) Human monoclonal antibodies from transgenic mice. Handb Exp Pharmacol 181:69–97

    Article  PubMed  CAS  Google Scholar 

  34. Pavri R, Nussenzweig MC (2011) AID targeting in antibody diversity. Adv Immunol 110: 1–26

    Article  PubMed  CAS  Google Scholar 

  35. Rada C, Ehrenstein MR, Neuberger MS et al (1998) Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 9: 135–141

    Article  PubMed  CAS  Google Scholar 

  36. Ehrenstein MR, Neuberger MS (1999) Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J 18: 3484–3490

    Article  PubMed  CAS  Google Scholar 

  37. Bransteitter R, Pham P, Scharff MD et al (2003) Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A 100:4102–4107

    Article  PubMed  CAS  Google Scholar 

  38. Kohli RM, Abrams SR, Gajula KS et al (2009) A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J Biol Chem 284:22898–22904

    Article  PubMed  CAS  Google Scholar 

  39. Wang M, Rada C, Neuberger MS (2010) Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID. J Exp Med 207:141–153

    Article  PubMed  CAS  Google Scholar 

  40. Bender NK, Heilig CE, Droll B et al (2007) Immunogenicity, efficacy and adverse events of adalimumab in RA patients. Rheumatol Int 27: 269–274

    Article  PubMed  CAS  Google Scholar 

  41. Coenen MJ, Toonen EJ, Scheffer H et al (2007) Pharmacogenetics of anti-TNF treatment in patients with rheumatoid arthritis. Pharmacogenomics 8:761–773

    Article  PubMed  CAS  Google Scholar 

  42. Getts DR, Getts MT, McCarthy DP et al (2010) Have we overestimated the benefit of human(ized) antibodies? MAbs 2:682–694

    Article  PubMed  Google Scholar 

  43. Shealy D, Cai A, Staquet K et al (2010) Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor alpha. MAbs 2:428–439

    Google Scholar 

  44. Kay J, Rahman MU (2010) Golimumab: a novel human anti-TNF-alpha monoclonal antibody for the treatment of rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis. Core Evid 4:159–170

    PubMed  Google Scholar 

  45. Varriale S, Merlino A, Coscia MR et al (2010) An evolutionary conserved motif is responsible for immunoglobulin heavy chain packing in the B cell membrane. Mol Phylogenet Evol 57: 1238–1244

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Allan Bradley, Andrew Sandham, and Glenn Friedrich for critical comments, and all other colleagues at Kymab for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E-Chiang Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, EC., Owen, M. (2012). The Application of Transgenic Mice for Therapeutic Antibody Discovery. In: Proetzel, G., Ebersbach, H. (eds) Antibody Methods and Protocols. Methods in Molecular Biology, vol 901. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-931-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-931-0_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-930-3

  • Online ISBN: 978-1-61779-931-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics