Skip to main content

Characterization and Gene Expression Profiling of Five Human Embryonic Stem Cell Lines Derived in Taiwan

  • Protocol
  • First Online:
Human Embryonic Stem Cells Handbook

Part of the book series: Methods in Molecular Biology ((MIMB,volume 873))

  • 2138 Accesses

Abstract

Human embryonic stem cell (hESC) lines have been derived from the inner cell mass of blastocysts. Five hESC lines have been derived from 32 discarded blastocysts in Taiwan, and these lines have since been continuously cultured on mitotically inactivated mouse embryonic fibroblasts as feeder in the hESC medium for more than 44 passages and underwent freezing/thawing processes. All of five hESC lines expressed characteristic undifferentiated hESC markers such as SSEA-4, TRA-1-81, alkaline phosphatase, TERT, transcription factors POU5F1 (OCT4), and NANOG. The hESC lines T1 and T3 possess normal female karyotypes, whereas lines T4 and T5 are normal male, but line T2 is male trisomy 12 (47XY,+12). The hESC lines T1, T2, T3, and T5 were able to produce teratomas in SCID mice, and line T4 could only form embryoid bodies in vitro. Global gene expression profiles of single colonies of these five hESC lines were analyzed using Affymetrix human genome U133 plus 2.0 GeneChip. The results showed that 4,145 transcripts, including 19% of unknown functions, were detected in all five hESC lines. Comparison of the 4,145 genes commonly expressed in the five hESC lines with those genes expressed in teratoma produced by hESC line T1 and placenta revealed 40 genes exclusively expressed in all five hESC lines. These 40 genes include the previously reported stemness genes such as POU5F1 (OCT4), NANOG, TDGF1 (CRIPTO), SALL4, LECT1, and BUB1 responsible for self-renewal and pluripotent differentiation. The global gene expression analysis also indicated that the TGFβ/activin branch components inhibin BC, ACVR2A, ACVR1 (ALK2), TGFBR1 (ALK5), and SMAD2 were found to be highly expressed in undifferentiated states of these five hESC lines and decreased upon differentiation. The epigenetic states and expression of 32 known imprinted genes in these five hESC lines and/or differentiated derivatives were also investigated. In short, the hESC nature of these five hESC lines is supported by the undifferentiated state, extensive renewal capacity, and pluripotency, including the ability to form teratomas and/or embryoid bodies; and these cell lines will be useful for research on human embryonic stem cell biology and drug development/toxicity testing. The epigenetic states and expression of imprinted genes in hESC lines should be thoroughly studied after extended culture and upon differentiation in order to understand epigenetic stability in hESC lines before their clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  2. Reubinoff BE, Pera MF, Fong CY et al (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  PubMed  CAS  Google Scholar 

  3. Cowan CA, Klimanskaya I, McMahon J et al (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356

    Article  PubMed  CAS  Google Scholar 

  4. Guhr A, Kurtz A, Friedgen K et al (2006) Current state of human embryonic stem cell research: an overview of cell lines and their use in experimental work. Stem Cells 24:2187–2191

    Article  PubMed  Google Scholar 

  5. Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85:635–678

    Article  PubMed  CAS  Google Scholar 

  6. Ramalho-Santos M, Yoon S, Matsuzaki Y et al (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Sciences 298:597–600

    Article  CAS  Google Scholar 

  7. Ivanova NB, Dimos JT, Schaniel C et al (2002) A stem cell molecular signature. Science 298:601–604

    Article  PubMed  CAS  Google Scholar 

  8. Jamie MS, Xin C, Jonathan SD et al (2003) Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci USA 100:13350–13355

    Article  Google Scholar 

  9. Assou S, Le Carrour T, Tondeur S et al (2007) A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells 25:961–973

    Article  PubMed  CAS  Google Scholar 

  10. Gallardo TD, Hammer RE, Garry DJ (2003) RNA amplification and transcriptional profiling for analysis of stem cell populations. Genesis 37:57–63

    Article  PubMed  CAS  Google Scholar 

  11. Dobson AT, Raja R, Abeyta MJ et al (2004) The unique transcriptome through day 3 of human preimplantation development. Hum Mol Genet 13:1461–1470

    Article  PubMed  CAS  Google Scholar 

  12. Li SS, Liu Y-H, Tseng C-N et al (2006) Analysis of gene expression in single human oocytes and preimplantation embryos. Biochem Biophys Res Commun 340:48–53

    Article  PubMed  CAS  Google Scholar 

  13. Maher ER, Afnan M, Barratt CL (2003) Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and iceberg. Hum Reprod 18:2508–2511

    Article  PubMed  Google Scholar 

  14. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA (2005) Epigenetic status of human embryonic stem cells. Nat Genet 37:585–587

    Article  PubMed  CAS  Google Scholar 

  15. Sun BW, Yang AC, Feng Y et al (2006) Temporal and parental-specific expression of imprinted genes in a newly derived Chinese human embryonic stem cell line and embryoid bodies. Hum Mol Genet 15:65–75

    Article  PubMed  Google Scholar 

  16. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA (2007) Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines. Hum Mol Genet 16:R243–R251

    Article  PubMed  CAS  Google Scholar 

  17. Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–465

    Article  PubMed  CAS  Google Scholar 

  18. Li SS, Liu Y-H, Tseng C-N et al (2006) Characterization and gene expression profiling of five new human embryonic stem cell lines derived in Taiwan. Stem Cells Dev 15:532–555

    Article  PubMed  CAS  Google Scholar 

  19. Li SS, Yu S-L, Singh S (2010) Epigenetic states and expression profiles of imprinted genes in human embryonic stem cell lines. World J Stem Cells 2:97–102

    PubMed  Google Scholar 

  20. Abbondanzo SJ, Gadi I, Stewart CL (1993) Derivation of embryonic stem cell lines. Methods Enzymol 225:803–823

    Article  PubMed  CAS  Google Scholar 

  21. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequences classes. Nature 423:825–837

    Article  PubMed  CAS  Google Scholar 

  22. Xu C, Inokuma MS, Denham J et al (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974

    Article  PubMed  CAS  Google Scholar 

  23. Stojkovic P, Lako M, Stewart R et al (2005) An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23:306–314

    Article  PubMed  CAS  Google Scholar 

  24. Li SS, Yu S-L, Kao L-P et al (2009) Target identification of microRNAs expressed highly in human embryonic stem cells. J Cell Biochem 106:1020–1030

    Article  PubMed  CAS  Google Scholar 

  25. Canales RD, Luo Y, Willey JC et al (2006) Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol 24:1115–1122

    Article  PubMed  CAS  Google Scholar 

  26. Shi L, Reid LH, Jones WD et al (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161

    Article  PubMed  CAS  Google Scholar 

  27. Mitalipova M, Calhoun J, Shin S et al (2003) Human embryonic stem cell lines derived from discarded embryos. Stem Cells 21:521–526

    Article  PubMed  CAS  Google Scholar 

  28. Draper JS, Smith K, Gokhale P et al (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54

    Article  PubMed  CAS  Google Scholar 

  29. Abeyta MJ, Clark AT, Rodriguez RT et al (2004) Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum Mol Genet 13:601–608

    Article  PubMed  CAS  Google Scholar 

  30. Ginis I, Luo Y, Miura T et al (2004) Differences between human and mouse embryonic stem cells. Dev Biol 269:360–380

    Article  PubMed  CAS  Google Scholar 

  31. Lebkowski JS, Gold J, Xu C et al (2001) Human embryonic stem cells: culture, differentiation, and genetic modification form regenerative medicine applications. Cancer J 7(Suppl 2):S83–S93

    PubMed  Google Scholar 

  32. Sato N, Sanjuan IM, Heke M et al (2003) Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 260:404–413

    Article  PubMed  CAS  Google Scholar 

  33. Rao RR, Calhoun JD, Qin X et al (2004) Comparative transcriptional profiling of two human embryonic stem cell lines. Biotechnol Bioeng 88:273–286

    Article  PubMed  CAS  Google Scholar 

  34. Dvash T, Mayshar Y, Darr H et al (2004) Temporal gene expression during differentiation of human embryonic stem cells and embryoid bodies. Hum Reprod 19:2875–2883

    Article  PubMed  CAS  Google Scholar 

  35. Golan-Mashiach M, Dazard JE, Gerecht-Nir S et al (2005) Design principle of gene expression used by human stem cells: implication for pluripotency. FASEB J 19:147–169

    PubMed  CAS  Google Scholar 

  36. Bhattacharya B, Miura T, Brandenberger R et al (2004) Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103:2956–2964

    Article  PubMed  CAS  Google Scholar 

  37. Zeng X, Miura T, Luo Y et al (2004) Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 22:292–312

    Article  PubMed  CAS  Google Scholar 

  38. Rao RR, Stice SL (2004) Gene expression profiling of embryonic stem cells leads to greater understanding of pluripotency and early developmental events. Biol Reprod 71:1772–1778

    Article  PubMed  CAS  Google Scholar 

  39. Bhattacharya B, Cai J, Luo Y et al (2005) Comparison of the gene expression profile of undifferentiated human embryonic stem cell lines and differentiated embryoid bodies. BMC Dev Biol 5:22

    Article  PubMed  Google Scholar 

  40. Brandenberger R, Wei H, Zhang S et al (2004) Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 22:707–716

    Article  PubMed  Google Scholar 

  41. Richards M, Tan SP, Tan JH et al (2004) The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22:51–64

    Article  PubMed  CAS  Google Scholar 

  42. Brandenberger R, Khrebtukova I, Thies RS et al (2004) MPSS profiling of human embryonic stem cells. BMC Dev Biol 4:10

    Article  PubMed  Google Scholar 

  43. Du J, Chen T, Zou X et al (2010) Dpp a2 knockdown-induced differentiation and repressed proliferation of mouse embryonic stem cells. J Biochem 147:265–271

    Article  PubMed  CAS  Google Scholar 

  44. James D, Levine AJ, Besser D (2005) TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–1282

    Article  PubMed  CAS  Google Scholar 

  45. Rho JY, Yu K, Han JS et al (2006) Transcriptional profiling of the developmentally important signaling pathways in human embryonic stem cells. Hum Reprod 21:405–412

    Article  PubMed  CAS  Google Scholar 

  46. Onyano P, Jiang S, Uejima H et al (2002) Monoallelic expression and methylation of imprinted genes in human and mouse embryonic germ cell lineages. Proc Nat Acad Sci USA 99:10599–10604

    Article  Google Scholar 

  47. Nicholls RD, Knepper JL (2001) Genome organization, function, and imprinting in Prader-Willi and Angelman syndrome. Annu Rev Genomics Hum Genet 22:153–175

    Article  Google Scholar 

Download references

Acknowledgments

I thank Drs. Y.-H. Liu, S. Singh, and S.-L. Yu for collaborating the derivation and characterization of these five hESC lines. I also thank my associates for their hardwork. My research has been supported by grants from National Science Council in Taiwan. My Chair Professorship has been supported by the Foundation for the Development of Outstanding Scholarship in Taiwan and The Medical Education and Development Foundation of Kaohsiung Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Shoei-Lung Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, S.SL. (2012). Characterization and Gene Expression Profiling of Five Human Embryonic Stem Cell Lines Derived in Taiwan. In: Turksen, K. (eds) Human Embryonic Stem Cells Handbook. Methods in Molecular Biology, vol 873. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-794-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-794-1_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-793-4

  • Online ISBN: 978-1-61779-794-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics