Skip to main content

Overview on Applications of Antisense-Mediated Exon Skipping

  • Protocol
  • First Online:
Exon Skipping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 867))

Abstract

Antisense-mediated exon skipping has multiple therapeutic applications. This chapter gives an overview of how this tool has been employed to restore normal splicing for cryptic splicing mutations, to switch between alternative splicing isoforms, to induce exon inclusion, to correct the reading frame to allow the production of internally deleted proteins, or to induce reading frame disruptions to achieve partial protein knockdown. For each application, examples are discussed and the current state of the art is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 90:8673–8677

    Article  PubMed  CAS  Google Scholar 

  2. van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M et al (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357:2677–2686

    Article  PubMed  Google Scholar 

  3. Svasti S, Suwanmanee T, Fucharoen S, Moulton HM, Nelson MH, Maeda N et al (2009) RNA repair restores hemoglobin expression in IVS2-654 thalassemic mice. Proc Natl Acad Sci USA 106:1205–1210

    Article  PubMed  CAS  Google Scholar 

  4. Xie SY, Li W, Ren ZR, Huang SZ, Zeng F, Zeng YT (2011) Correction of beta654-thalassaemia mice using direct intravenous injection of siRNA and antisense RNA vectors. Int J Hematol 93:301–310

    Article  PubMed  CAS  Google Scholar 

  5. Davis RL, Homer VM, George PM, Brennan SO (2009) A deep intronic mutation in FGB creates a consensus exonic splicing enhancer motif that results in afibrinogenemia caused by aberrant mRNA splicing, which can be corrected in vitro with antisense oligonucleotide treatment. Hum Mutat 30:221–227

    Article  PubMed  CAS  Google Scholar 

  6. Du L, Pollard JM, Gatti RA (2007) Correction of prototypic ATM splicing mutations and aberrant ATM function with antisense morpholino oligonucleotides. Proc Natl Acad Sci USA 104:6007–6012

    Article  PubMed  CAS  Google Scholar 

  7. Uchikawa H, Fujii K, Kohno Y, Katsumata N, Nagao K, Yamada M et al (2007) U7 snRNA-mediated correction of aberrant splicing caused by activation of cryptic splice sites. J Hum Genet 52:891–897

    Article  PubMed  CAS  Google Scholar 

  8. Vega AI, Perez-Cerda C, Desviat LR, Matthijs G, Ugarte M, Perez B (2009) Functional analysis of three splicing mutations identified in the PMM2 gene: toward a new therapy for congenital disorder of glycosylation type Ia. Hum Mutat 30:795–803

    Article  PubMed  CAS  Google Scholar 

  9. Friedman KJ, Kole J, Cohn JA, Knowles MR, Silverman LM, Kole R (1999) Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides. J Biol Chem 274:36193–36199

    Article  PubMed  CAS  Google Scholar 

  10. David A, Srirangalingam U, Metherell LA, Khoo B, Clark AJ (2010) Repair of aberrant splicing in growth hormone receptor by antisense oligonucleotides targeting the splice sites of a pseudoexon. J Clin Endocrinol Metab 95(7):3542–3546

    Article  PubMed  CAS  Google Scholar 

  11. Kollberg G, Holme E (2009) Antisense oligonucleotide therapeutics for iron-sulphur cluster deficiency myopathy. Neuromuscul Disord 19:833–836

    Article  PubMed  Google Scholar 

  12. Madsen EC, Morcos PA, Mendelsohn BA, Gitlin JD (2008) In vivo correction of a Menkes disease model using antisense oligonucleotides. Proc Natl Acad Sci USA 105:3909–3914

    Article  PubMed  CAS  Google Scholar 

  13. Ugarte M, Aguado C, Desviat LR, Sanchez-Alcudia R, Rincon A, Perez B (2007) Propionic and methylmalonic acidemia: antisense therapeutics for intronic variations causing aberrantly spliced messenger RNA. Am J Hum Genet 81:1262–1270

    Article  PubMed  Google Scholar 

  14. Pros E, Fernandez-Rodriguez J, Canet B, Benito L, Sanchez A, Benavides A et al (2009) Antisense therapeutics for neurofibromatosis type 1 caused by deep intronic mutations. Hum Mutat 30:454–462

    Article  PubMed  CAS  Google Scholar 

  15. Rodriguez-Pascau L, Coll MJ, Vilageliu L, Grinberg D (2009) Antisense oligonucleotide treatment for a pseudoexon-generating mutation in the NPC1 gene causing Niemann-Pick type C disease. Hum Mutat 30:E993–E1001

    Article  PubMed  Google Scholar 

  16. Vetrini F, Tammaro R, Bondanza S, Surace EM, Auricchio A, De Luca M et al (2006) Aberrant splicing in the ocular albinism type 1 gene (OA1/GPR143) is corrected in vitro by morpholino antisense oligonucleotides. Hum Mutat 27:420–426

    Article  PubMed  CAS  Google Scholar 

  17. Jiang K, Apostolatos AH, Ghansah T, Watson JE, Vickers T, Cooper DR et al (2008) Identification of a novel antiapoptotic human protein kinase C delta isoform, PKCdeltaVIII in NT2 cells. Biochemistry 47:787–797

    Article  PubMed  CAS  Google Scholar 

  18. Kim DW, Kim JH, Park M, Yeom JH, Go H, Kim S et al (2011) Modulation of biological processes in the nucleus by delivery of DNA oligonucleotides conjugated with gold nanoparticles. Biomaterials 32:2593–2604

    Article  PubMed  CAS  Google Scholar 

  19. Mercatante DR, Mohler JL, Kole R (2002) Cellular response to an antisense-mediated shift of Bcl-x pre-mRNA splicing and antineoplastic agents. J Biol Chem 277:49374–49382

    Article  PubMed  CAS  Google Scholar 

  20. Renshaw J, Orr RM, Walton MI, Te PR, Williams RD, Wancewicz EV et al (2004) Disruption of WT1 gene expression and exon 5 splicing following cytotoxic drug treatment: antisense down-regulation of exon 5 alters target gene expression and inhibits cell survival. Mol Cancer Ther 3:1467–1484

    PubMed  CAS  Google Scholar 

  21. Fong LG, Vickers TA, Farber EA, Choi C, Yun UJ, Hu Y et al (2009) Activating the synthesis of progerin, the mutant prelamin A in Hutchinson-Gilford progeria syndrome, with antisense oligonucleotides. Hum Mol Genet 18:2462–2471

    Article  PubMed  CAS  Google Scholar 

  22. Karras JG, Maier MA, Lu T, Watt A, Manoharan M (2001) Peptide nucleic acids are potent modulators of endogenous pre-mRNA splicing of the murine interleukin-5 receptor-alpha chain. Biochemistry 40:7853–7859

    Article  PubMed  CAS  Google Scholar 

  23. Graziewicz MA, Tarrant TK, Buckley B, Roberts J, Fulton L, Hansen H et al (2008) An endogenous TNF-alpha antagonist induced by splice-switching oligonucleotides reduces inflammation in hepatitis and arthritis mouse models. Mol Ther 16:1316–1322

    Article  PubMed  CAS  Google Scholar 

  24. Vickers TA, Zhang H, Graham MJ, Lemonidis KM, Zhao C, Dean NM (2006) Modification of MyD88 mRNA splicing and inhibition of IL-1beta signaling in cell culture and in mice with a 2′-O-methoxyethyl-modified oligonucleotide. J Immunol 176:3652–3661

    PubMed  CAS  Google Scholar 

  25. Wheeler TM, Lueck JD, Swanson MS, Dirksen RT, Thornton CA (2007) Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J Clin Invest 117:3952–3957

    PubMed  CAS  Google Scholar 

  26. Wheeler TM, Sobczak K, Lueck JD, Osborne RJ, Lin X, Dirksen RT et al (2009) Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science 325:336–339

    Article  PubMed  CAS  Google Scholar 

  27. Tyson-Capper AJ, Europe-Finner GN (2006) Novel targeting of cyclooxygenase-2 (COX-2) pre-mRNA using antisense morpholino oligonucleotides directed to the 3′ acceptor and 5′ donor splice sites of exon 4: suppression of COX-2 activity in human amnion-derived WISH and myometrial cells. Mol Pharmacol 69:796–804

    PubMed  CAS  Google Scholar 

  28. Bruno IG, Jin W, Cote GJ (2004) Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements. Hum Mol Genet 13:2409–2420

    Article  PubMed  CAS  Google Scholar 

  29. Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM et al (2011) Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 3:72ra18

    Article  PubMed  Google Scholar 

  30. Meyer K, Marquis J, Trub J, Nlend NR, Verp S, Ruepp MD et al (2009) Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation. Hum Mol Genet 18:546–555

    Article  PubMed  CAS  Google Scholar 

  31. Aartsma-Rus A (2010) Antisense-mediated modulation of splicing: therapeutic implications for Duchenne muscular dystrophy. RNA Biol 7:453–461

    Google Scholar 

  32. Goto M, Sawamura D, Nishie W, Sakai K, McMillan JR, Akiyama M et al (2006) Targeted skipping of a single exon harboring a premature termination codon mutation: implications and potential for gene correction therapy for selective dystrophic epidermolysis bullosa patients. J Invest Dermatol 126:2614–2620

    Article  PubMed  CAS  Google Scholar 

  33. Aartsma-Rus A, Singh KH, Fokkema IF, Ginjaar IB, van Ommen GJ, Dunnen JT et al (2010) Therapeutic exon skipping for dysferlinopathies? Eur J Hum Genet 18(8):889–894

    Article  PubMed  CAS  Google Scholar 

  34. Levy N, Wein N, Barthelemy F, Mouly V, Garcia L, Krahn M et al (2010) Therapeutic exon ‘switching’ for dysferlinopathies? Eur J Hum Genet 18(9):969–970

    Article  PubMed  Google Scholar 

  35. Wein N, Avril A, Bartoli M, Beley C, Chaouch S, Laforet P et al (2010) Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Hum Mutat 31:136–142

    Article  PubMed  CAS  Google Scholar 

  36. Van de Vosse E, Verhar EM, de Pau RA, Platenburg GJ et al (2009) Antisense-mediated exon skipping to correct IL-12Rbeta1 deficiency in T cells. Blood 113:4548–4555

    Article  PubMed  Google Scholar 

  37. Khoo B, Roca X, Chew SL, Krainer AR (2007) Antisense oligonucleotide-induced alternative splicing of the APOB mRNA generates a novel isoform of APOB. BMC Mol Biol 8:3

    Article  PubMed  Google Scholar 

  38. Shiraishi T, Eysturskarth J, Nielsen PE (2010) Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions. BMC Cancer 10:342

    Article  PubMed  CAS  Google Scholar 

  39. Sekhon HS, London CA, Sekhon M, Iversen PL, Devi GR (2008) c-MYC antisense phosphosphorodiamidate morpholino oligomer inhibits lung metastasis in a murine tumor model. Lung Cancer 60:347–354

    Article  PubMed  Google Scholar 

  40. Pankratova S, Nielsen BN, Shiraishi T, Nielsen PE (2010) PNA-mediated modulation and redirection of Her-2 pre-mRNA splicing: specific skipping of erbB-2 exon 19 coding for the ATP catalytic domain. Int J Oncol 36:29–38

    PubMed  CAS  Google Scholar 

  41. Kang JK, Malerba A, Popplewell L, Foster K, Dickson G (2011) Antisense-induced myostatin exon skipping leads to muscle hypertrophy in mice following octa-guanidine morpholino oligomer treatment. Mol Ther 19:159–164

    Article  PubMed  CAS  Google Scholar 

  42. Hua Y, Sahashi K, Hung G, Rigo F, Passini MA, Bennett CF et al (2010) Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24:1634–1644

    Article  PubMed  CAS  Google Scholar 

  43. Shieh JJ, Liu KT, Huang SW, Chen YJ, Hsieh TY (2009) Modification of alternative splicing of Mcl-1 pre-mRNA using antisense morpholino oligonucleotides induces apoptosis in basal cell carcinoma cells. J Invest Dermatol 129:2497–2506

    Article  PubMed  CAS  Google Scholar 

  44. Kalbfuss B, Mabon SA, Misteli T (2001) Correction of alternative splicing of tau in frontotemporal dementia and parkinsonism linked to chromosome 17. J Biol Chem 276:42986–42993

    Article  PubMed  CAS  Google Scholar 

  45. Williams T, Kole R (2006) Analysis of ­prostate-specific membrane antigen splice ­variants in LNCap cells. Oligonucleotides 16:186–195

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

WvRM receives funding from The Prinses Beatrix Foundation (The Netherlands), ADCA vereniging (The Netherlands), Ataxia UK (United Kingdom), and NGI Exemplification Award (The Netherlands).

AAR receives funding from ZonMw (The Netherlands), the Dutch Duchenne Parent Project (The Netherlands), Spieren voor spieren (Prinses Beatrix Foundation, The Netherlands) and the European Union (LUMC is partner in the TREAT-NMD network of excellence (LSHM-CT-2006-036825), and the BIO-NMD project (HEALTH-F2-2009-241665)). The LUMC participated in the Center for Biomedical Genetics (The Netherlands) and the Center for Medical Systems Biology (The Netherlands).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemieke Aartsma-Rus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

van Roon-Mom, W.M.C., Aartsma-Rus, A. (2012). Overview on Applications of Antisense-Mediated Exon Skipping. In: Aartsma-Rus, A. (eds) Exon Skipping. Methods in Molecular Biology, vol 867. Humana Press. https://doi.org/10.1007/978-1-61779-767-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-767-5_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-766-8

  • Online ISBN: 978-1-61779-767-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics