Skip to main content

An Introduction to Planar Chromatography and Its Application to Natural Products Isolation

  • Protocol
  • First Online:
Natural Products Isolation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 864))

Abstract

Thin-layer chromatography (TLC) is an easy, inexpensive, rapid, and the most widely used method for the analysis and isolation of small organic natural and synthetic products. It also has use in the biological evaluation of organic compounds, particularly in the areas of antimicrobial and antioxidant metabolites and for the evaluation of acetylcholinesterase inhibitors which have utility in the treatment of Alzheimer’s disease. The ease and inexpensiveness of use of this technique, coupled with the ability to rapidly develop separation and bioassay protocols will ensure that TLC will be used for some considerable time alongside conventional instrumental methods. This chapter deals with the basic principles of TLC and describes methods for the analysis and isolation of natural products. Examples of methods for isolation of several classes of natural product are detailed and protocols for TLC bioassays are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gray AI (1993) Quinoline alkaloids related to anthranilic acid, Chapter 8. Methods in plant biochemistry. Academic, London, p 288

    Google Scholar 

  2. (1991) CRC handbook of chemistry and physics 72nd edition

    Google Scholar 

  3. Stierle A, Strobel G, Stierle D et al (1995) The search for a Taxol producing microorganism among the endophytic fungi of the pacific yew Taxus brevifolia. J Nat Prod 58:1315–1324

    Article  PubMed  CAS  Google Scholar 

  4. Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    PubMed  CAS  Google Scholar 

  5. Waterman PG, Grundon MF (eds) (1983) Chemistry and chemical taxonomy of the Rutales. Academic, London

    Google Scholar 

  6. Hegnauer R (1989) Chemotaxonomie de Pflanzen, vol 1–10. Birkhäuser Verlag, Berlin

    Google Scholar 

  7. Gibbons S (1994) PhD Thesis, University of Strathclyde

    Google Scholar 

  8. Wagner H, Bladt S (1996) Plant drug analysis – a thin layer chromatography Atlas. Springer, Berlin

    Google Scholar 

  9. Merck E (1980) Merck handbook – dyeing reagents for thin layer and paper chromatography. E. Merck, Darmstadt, Germany

    Google Scholar 

  10. Gibbons S, Gray AI, Hockless DCR et al (1993) Novel D:A friedo-oleanane triterpenes from the stem bark of Phyllobotryon spathulatum. Phytochemistry 34:273–277

    Article  CAS  Google Scholar 

  11. Khan MR, Gray AI, Waterman PG (1990) Clerodane diterpenes from Zuelania guidonia stem bark. Phytochemistry 29:2939–2942

    Article  CAS  Google Scholar 

  12. Ampofo S, Waterman PG (1984) Cytotoxic quassinoids from Odyendyea gabonensis stem bark: isolation and high field NMR. Planta Med 50:261–263

    Article  PubMed  Google Scholar 

  13. Tyihak E, Mincsovics E, Kalasz H (1979) New planar liquid chromatographic technique: overpressured thin layer chromatography. J Chromatogr 174:75–81

    Article  CAS  Google Scholar 

  14. Nyiredy S, Dallenbach-Tölke K, Erdelmeier CA, et al. (1985) Abstracts. In: 33rd. Annual Congress of the Society for Medicinal Plant Research, Regensburg

    Google Scholar 

  15. Christensen LP (2009) Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Advances in food and nutrition research, Vol 55, Chapter 1. 1–99

    Google Scholar 

  16. Cieśla L, Waksmundzka-Hajnos M (2009) Two-dimensional thin-layer chromatography in the analysis of secondary plant metabolites. J Chromatogr A 1216:1035–1052

    Article  PubMed  Google Scholar 

  17. Puri A, Ahmad A, Panda BP (2010) Development of an HPTLC-based diagnostic method for invasive aspergillosis. Biomed Chromatogr 24:887–892

    PubMed  CAS  Google Scholar 

  18. Sharma P, Bharath MMS, Murthy P (2010) Qualitative high performance thin layer chromatography (HPTLC) analysis of cannabinoids in urine samples of Cannabis abusers. Indian J Med Res 132:201–208

    PubMed  CAS  Google Scholar 

  19. Reich E, Widmer V (2009) Plant analysis 2008 – planar chromatography. Planta Med 75:711–718

    Article  PubMed  CAS  Google Scholar 

  20. Ahsan M (1993) PhD Thesis, University of Strathclyde

    Google Scholar 

  21. Ober AG, Fronczek FR, Fischer NH (1985) Sesquiterpene lactones of Calea divaricata and the molecular structure of leptocarpin acetate. J Nat Prod 48:302

    Article  CAS  Google Scholar 

  22. Habtemariam S, Gray AI, Waterman PG (1994) Diterpenes from the leaves of Leonotis ocymifolia var. raineriana. J Nat Prod 57:1570–1574

    Article  CAS  Google Scholar 

  23. Jolad SD, Hoffmann JJ, Schram KH et al (1984) A new diterpene from Cupressus govenia var. abramasiana: 5β-hydroxy-6-oxasugiol (Cupresol). J Nat Prod 47:983–987

    Article  PubMed  CAS  Google Scholar 

  24. Gibbons S, Gray AI, Waterman PG (1996) Clerodane diterpenes from the bark of Casearia tremula. Phytochemistry 41:565–570

    Article  CAS  Google Scholar 

  25. El-Dib R, Kaloga M, Mahmoud I et al (2004) Sablacaurin A and B, two 19-nor-3,4-seco-lanostane-type triterpenoids from Sabal causiarum and Sabal blackburniana respectively. Phytochemistry 65:153–1157

    Article  Google Scholar 

  26. van Beek TA (2002) Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A 967:21–55

    Article  PubMed  Google Scholar 

  27. Roby MR, Stermitz FR (1984) Penstemonoside and other iridoids from Castilleja rhexifolia. Conversion of penstemonoside to the pyridine monoterpene alkaloid rhexifoline. J Nat Prod 47:854–857

    Article  CAS  Google Scholar 

  28. Riaz N, Malik A, Rehman A et al (2004) Lipoxygenase inhibiting and antioxidant oligostilbene and monoterpene galactoside from Paeonia emodi. Phytochemistry 65:1129–1135

    Article  PubMed  CAS  Google Scholar 

  29. Khan F, Peter XK, Mackenzie RM et al (2004) Venusol from Gunnera perpensa: structural and activity studies. Phytochemistry 65:1117–1121

    Article  PubMed  CAS  Google Scholar 

  30. Shaari K, Waterman PG (1995) Further glucosides and simple isocoumarins from Homalium longifolium. Nat Prod Lett 7:243–250

    Article  CAS  Google Scholar 

  31. Sarker S (1994) PhD Thesis, University of Strathclyde

    Google Scholar 

  32. Matsunaga K, Shibuya M, Ohizumi Y (1994) Graminone B, a novel lignan with vasodilative activity from Imperata cylindrical. J Nat Prod 57:1734–1736

    Article  PubMed  CAS  Google Scholar 

  33. Evidente A, Sparapano L (1994) 7′-Hydroxyseiridin and the 7′-hydroxyisoseiridin, two new phytotoxic ∆α, β-butenolids from three species of Seiridium pathogenic to cypresses. J Nat Prod 57:1720–1725

    Article  CAS  Google Scholar 

  34. Pairet L, Wrigley SK, Chetland I et al (1995) Azaphilones with endothelin receptor binding activity produced by Penicillium sclerotiorum: taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot 48:913–923

    PubMed  CAS  Google Scholar 

  35. Brochmann-Hanssen E, Cheng CY (1984) Biosynthesis of a narcotic antagonist: conversion of N-allylnorreticuline to N-allylnor­morphine in Papaver somniferum. J Nat Prod 47:175–176

    Article  CAS  Google Scholar 

  36. Valencia E, Weiss I, Shamma M et al (1984) Dihydrorugosine, a pseudobenzylisoquinoline alkaloid from Berberis darwinii and Berberis actinacantha. J Nat Prod 47:1050–1051

    Article  CAS  Google Scholar 

  37. Basa SC, Tripathy RN (1984) A new acridone alkaloid from Citrus decumana. J Nat Prod 47:325–330

    Article  CAS  Google Scholar 

  38. Pelletier SW, Ying CS, Joshi BS et al (1984) The structures of forestine and foresticine, two new C19-diterpenoid alkaloids from Aconitum forrestii Stapf. J Nat Prod 47:474–477

    Article  CAS  Google Scholar 

  39. Evidente A, Iasiello I, Randazzo G (1984) Isolation of sternbergine, a new alkaloid from the bulbs of Sternbergia lutea. J Nat Prod 47:1003–1008

    Article  CAS  Google Scholar 

  40. Lin L-Z, Hu S-H, Zaw K et al (1994) Thalfaberidine, a cytotoxic aporphine-benzylisoquinoline alkaloid from Thalictrum faberi. J Nat Prod 57:1430–1436

    Article  PubMed  CAS  Google Scholar 

  41. Mahabusarakam W, Deachathai S, Phongpaichit S et al (2004) A benzil and isoflavone derivatives from Derris scandens Benth. Phytochemistry 65:1185–1191

    Article  PubMed  CAS  Google Scholar 

  42. Slimestad R, Andersen OM, Francis GW (1994) Ampelopsin 7-glucoside and other dihydroflavonol 7-glucosides from needles of Picea abies. Phytochemistry 35:550–552

    Article  CAS  Google Scholar 

  43. Abegaz BM, Bezabeh M, Alemayehu G et al (1994) Anthraquinones from Senna multigladulosa. Phytochemistry 35:465–468

    Article  CAS  Google Scholar 

  44. Yang CX, Huang SS, Yang XP et al (2004) Norlignans and steroidal saponins from Asparagus gobicus. Planta Med 70:446–451

    Article  PubMed  CAS  Google Scholar 

  45. Yin J, Kouda K, Tezuka Y et al (2004) New diarylheptanoids from the rhizomes of Dioscorea spongiosa and their antiosteoporotic activity. Planta Med 70:54–58

    Article  PubMed  CAS  Google Scholar 

  46. Sun L, Rahman MM, Skelton BW et al (2009) A new dihydrodibenzodioxinone from Hypericum  ×  Hidcote. Fitoterapia 80:226–229

    Article  PubMed  CAS  Google Scholar 

  47. Shiu WKP, Gibbons S (2009) Dibenzofuran and pyranone metabolites from Hypericum revolutum ssp. revolutum and Hypericum choisianum. Phytochemistry 70:403–406

    Article  PubMed  CAS  Google Scholar 

  48. Erasto P, Bojase-Moleta G, Majinda RRT (2004) Antimicrobial and antioxidant flavonoids from the root wood of Bolusanthus speciosus. Phytochemistry 65:875–880

    Article  PubMed  CAS  Google Scholar 

  49. Marston A, Kissling J, Hostettmann K (2002) A rapid TLC bioautographic method for the detection of acetylcholineesterase and butyrlcholine esterase inhibitors in plants. Phytochem Anal 13:51–54

    Article  PubMed  CAS  Google Scholar 

  50. Akkad R, Schwack W (2010) Multi-enzyme inhibition assay for the detection of insecticidal organophosphates and carbamates by high-performance thin-layer chromatography applied to determine enzyme inhibition factors and residues in juice and water samples. J Chromatogr B 878:1337–1345

    Article  CAS  Google Scholar 

  51. Cole MD (1994) Key antifungal and antibacterial assays – a critical review. Biochem Syst Ecol 22:837–856

    Article  CAS  Google Scholar 

  52. Spooner DF, Sykes G (1972) ‘Laboratory assessment of antibacterial activity.’ Methods in microbiology Vol 7

    Google Scholar 

  53. Holt RJ (1975) Laboratory tests of antifungal drugs. J Clin Path 28:767–774

    Article  PubMed  CAS  Google Scholar 

  54. Rios JL, Recio MC, Villar A (1988) Screening methods for natural products with antimicrobial activity: a review of the literature. J Ethnopharmacol 23:127–149

    Article  PubMed  CAS  Google Scholar 

  55. Homans AL, Fuchs A (1970) Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J Chromatogr 51:327–329

    Article  PubMed  CAS  Google Scholar 

  56. Betina V (1973) Bioautography in paper and thin-layer chromatography and its scope in the antibiotic field. J Chromatogr 78:41–51

    Article  PubMed  CAS  Google Scholar 

  57. Ieven M, Vanden-Berghe DA, Mertens F et al (1979) Screening of higher plants for biological activity I. Antimicrobial activity. Planta Med 36:311–321

    Article  PubMed  CAS  Google Scholar 

  58. Begue WJ, Kline RM (1972) The use of tetrazolium salts in bioautographic procedures. J Chromatogr 64:182–184

    Article  PubMed  CAS  Google Scholar 

  59. Rahalison L, Hamburger M, Hostettmann K et al (1991) A bioautographic agar overlay method for the detection of antifungal compounds from higher plants. Phytochem Anal 2:199–203

    Article  CAS  Google Scholar 

  60. Dellar JE, Cole MD, Gray AI et al (1994) Antimicrobial sesquiterpenes from Prostanthera aff. melissifilia and P. rotundifolia. Phyto­chemistry 36:957–960

    Article  PubMed  CAS  Google Scholar 

  61. Hostettmann K, Marston A (1994) Search for new antifungal compounds from higher plants. Pure Appl Chem 66:2231–2234

    Article  CAS  Google Scholar 

  62. Batista O, Simoes MF, Duarte A et al (1995) An antimicrobial abietane from the roots of Plectranthus hereroensis. Phytochemistry 38:167–167

    Article  PubMed  CAS  Google Scholar 

  63. Hamburger MO, Cordell GA (1987) A direct bioautographic TLC assay for compounds possessing antibacterial activity. J Nat Prod 50:19–22

    Article  PubMed  CAS  Google Scholar 

Suggested Reading

  • Grinberg N (1990) Modern thin layer chromatography. Chromatographic science series, Vol 52, Marcel Dekker

    Google Scholar 

  • Hostettmann K, Hostettmann M, Marston A (1986) Preparative chromatography techniques – applications in natural product isolation. Springer, Berlin

    Google Scholar 

  • Merck E (1980) Merck handbook – dyeing reagents for thin layer and paper chromatography, a comprehensive set of spray reagents. E. Merck, Darmstadt, Germany

    Google Scholar 

  • Touchstone JC, Dobbins MF (1982) Practice of thin layer chromatography. Wiley, Chichester

    Google Scholar 

  • Wagner H, Bladt S (1996) Plant drug analysis – a thin layer chromatography Atlas. Springer, Berlin, The first point of call for anyone interested in TLC of natural products. There are many excellent examples of systems and detection sprays

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Gibbons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gibbons, S. (2012). An Introduction to Planar Chromatography and Its Application to Natural Products Isolation. In: Sarker, S., Nahar, L. (eds) Natural Products Isolation. Methods in Molecular Biology, vol 864. Humana Press. https://doi.org/10.1007/978-1-61779-624-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-624-1_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-623-4

  • Online ISBN: 978-1-61779-624-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics