Skip to main content

Metabolomics-Edited Transcriptomics Analysis (META)

  • Protocol
  • First Online:
The Handbook of Metabolomics

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The study of the metabolome or systems biochemical functions in response to external agents such as drugs or toxicants is made possible by recent advances in NMR and mass spectrometry. By coupling the analytical technologies with the stable isotope tracer approach, it is also practical to map changes in metabolic networks with atomic resolution such that metabolic perturbations can be discerned at the enzyme reaction level. This information readily lends its use in guiding transcriptomic analysis for metabolic regulations at the transcriptional level—an approach called “Metabolomics-Edited Transcriptomic Analysis” or META. Two example studies are given to illustrate the use of uniformly 13C-labeled glucose tracer, 13C-isotopomer-based metabolomic analysis, and META for reconstructing metabolic pathways and for discerning their regulatory pathways. The first example describes a hypothetical investigation on the role of a “master” metabolic switch (AMP-activated protein kinase or AMPK) in regulating nucleic acid, lipid, and protein-related metabolism. NMR and GC-MS are complementarily used to obtain quantitative changes in metabolite and 13C-isotopomer profiles in a model cancer cell in response to AMPK activation (induced by AICAR, an adenosine analogue) or AMPK inactivation via siRNA knockdown. Expected findings from META that are consistent with known AMPK-mediated regulations include downregulation or phosphorylation of key proteins involved in the synthesis of fatty acids, phospholipids, and proteins. Scenarios for uncovering metabolic regulations previously unknown or contradictory to known AMPK actions are also given. The second example illustrates a real-world investigation on defining the multitargeted action of selenite in human lung adenocarcinoma A549 cells. The META approach revealed AMPK-mediated downregulation of fatty acid and protein synthesis, in addition to negative regulation of glycolysis, pentose phosphate pathway, Krebs cycle, glutathione synthesis, and nucleotide synthesis, as well as positive regulation of Gln metabolism. The complexity of the selenite action including the induction of opposing regulatory events was resolvable with the integrated metabolomics and transcriptomics approach, which is also generally applicable to any living system including the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACC:

Acetyl CoA carboxylase

ACLY:

ATP citrate lyase

aG3P:

α-Glycerol-3-phosphate

AICAR:

5-Aminoimidazole-4-carboxamide ribonucleoside

aKG:

α-Ketoglutarate

AMPK:

AMP-activated protein kinase

AXP:

Adenine nucleotides

ChREBP:

Carbohydrate-response-element-binding protein

CT:

Choline transporter

CXP:

Cytosine nucleotides

DAG:

Diacylglycerol

DAGK:

Diacylglycerol kinase

DHAP:

Dihydroxyacetone phosphate

eEF2:

Eukaryotic elongation factor 2

eIF4E-BP:

Eukaryotic initiation factor 4E binding protein

FAS:

Fatty acid synthase

FBPase:

Fructose bisphosphatase

G6Pase:

Glucose-6-phosphatase

G6PDH:

Glucose-6-phosphate dehydrogenase

GAP:

Glyceraldehyde-3-phosphate

GCL:

Glutamyl-cysteinyl ligase

GDH:

Glutamate dehydrogenase

Glnase IP:

Glutaminase interacting protein

GLU4:

Glucose transporter 4

GPAT:

Glycerol phosphate acyl transferase

GPC:

Glycerophosphorylcholine

GPDH:

Glycerol-3-phosphate dehydrogenase

GS:

Glycogen synthase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

GXP:

Guanine nucleotides

HMGR:

3-Hydroxy-3-methylglutaryl-coenzyme A reductase

HSQC:

Heteronuclear single quantum coherence spectroscopy

iPFK2:

Inducible phosphofructokinase 2

KD:

Knockdown

LDH:

Lactate dehydrogenase

LysoPlase:

Lysophospholipase

MCT1:

Monocarboxylic acid transporter 1

MDH:

Malate dehydrogenase

ME:

Malic enzyme

META:

Metabolomics-edited transcriptomic analysis

METPA:

Metabolomics-edited transcriptomics and proteomics analysis

mTOR:

Mammalian target of rapamycin

N transporter:

Neutral amino acid transporter

OAA:

Oxaloacetate

PABP:

Poly(A)-binding protein

PC:

Phosphatidylcholines

PCase:

Pyruvate carboxylase

P-choline:

Phosphorylcholine

PDH:

Pyruvate dehydrogenase

PDK:

1,3-Phosphoinositide-dependent protein kinase

PE:

Phosphatidylethanolamines

PEP:

Phosphoenolpyruvate

PEPCK:

Phosphoenolpyruvate carboxykinase

PFK:

6-Phosphofructo-2-kinase

PI3K:

Phosphoinositide-3 kinase

PK:

Pyruvate kinase

PKB:

Protein kinase B

PKC:

Protein kinase C

PL:

Phospholipids

PLase:

Phospholipase

PPP:

Pentose phosphate pathway

S6K:

S6 protein kinase

SDH:

Succinate dehydrogenase

SREBP:

Steroid-regulated-element binding protein

TCA:

Trichloroacetic acid

TOCSY:

Total correlation spectroscopy

TOP:

5′-Tract of oligopyrimidine

TPI:

Triosephosphate isomerase

TSC2:

Tuberous sclerosis component 2

[U-13C]-Glc:

13C labeled glucose

UXP:

Uracil nucleotides

References

  1. Griffiths JR, Stubbs M. Opportunities for studying cancer by metabolomics: preliminary observations on tumors deficient in hypoxia-inducible factor 1. Adv Enzyme Regul. 2003;43:67–76.

    CAS  PubMed  Google Scholar 

  2. Watkins SM, et al. Lipid metabolome-wide effects of the PPARgamma agonist rosiglitazone. J Lipid Res. 2002;43(11):1809–17.

    CAS  PubMed  Google Scholar 

  3. Hirai MY, et al. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2004;101(27):10205–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boros LG. Metabolic targeted therapy of cancer: current tracer technologies and future drug design strategies in the old metabolic network. Metabolomics. 2005;1(1):11–5.

    CAS  Google Scholar 

  5. Suzuki KT. Metabolomics of selenium: Se metabolites based on speciation studies. J Health Sci. 2005;51(2):107–14

    CAS  Google Scholar 

  6. Lafaye A, et al. Combined proteome and metabolite-profiling analyses reveal surprising insights into yeast sulfur metabolism. J Biol Chem. 2005;280(26):24723–30.

    CAS  PubMed  Google Scholar 

  7. Smith MT, et al. Use of “Omic” technologies to study humans exposed to benzene. Chem Biol Interact. 2005;153:123–7.

    PubMed  Google Scholar 

  8. Heijne WHM, et al. Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis. Toxicol Pathol. 2005;33(4):425–33.

    CAS  PubMed  Google Scholar 

  9. Tohge T, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 2005;42(2):218–35.

    CAS  PubMed  Google Scholar 

  10. Verhoeckx KCM, et al. Characterization of anti-inflammatory compounds using transcriptomics, proteomics, and metabolomics in combination with multivariate data analysis. Int Immunopharmacol. 2004;4(12):1499–5

    CAS  PubMed  Google Scholar 

  11. Lenz EM, et al. Qualitative high field 1 H-NMR spectroscopy for the characterization of endogenous metabolites in earthworms with biochemical biomarker potential. Metabolomics. 2005;1(2):123–36.

    CAS  Google Scholar 

  12. Troy H, et al. Metabolic profiling of hypoxia-inducible factor-1β-deficient and wild type Hepa-1 cells: effects of hypoxia measured by 1H magnetic resonance spectroscopy. Metabolomics. 2005;1:1–11.

    Google Scholar 

  13. Whitehead T, Monzavi-Karbassi B, Kieber-Emmons T. 1H-NMR metabolomics analysis of sera differentiates between mammary tumor-bearing mice and healthy controls. Metabolomics. 2005;1:1–10.

    Google Scholar 

  14. Lutz NW. From metabolic to metabolomic NMR spectroscopy of apoptotic cells. Metabolomics. 2005;1:1–18.

    Google Scholar 

  15. Fan T, et al. Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells. Metabolomics J. 2005;1(4):325–39.

    CAS  Google Scholar 

  16. Rezzi S, et al. Application of 1H-NMR by metabolomics approach to exhaled breath condensate in childhood asthma. In: Abstracts of the 2nd scientific meeting of the metabolomics society, Boston, MA; 2006.

    Google Scholar 

  17. Yang L, et al. Metabolomic assays of the concentration and mass isotopomer distribution of gluconeogenic and citric acid cycle intermediates. Metabolomics. 2006;2(2):1573–3882.

    Google Scholar 

  18. Weljie AM, et al. Targeted profiling: quantitative analysis of H-1 NMR metabolomics data. Anal Chem. 2006;78(13):4430–42.

    CAS  PubMed  Google Scholar 

  19. Fiehn O, et al. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000;18(11):1157–61.

    CAS  PubMed  Google Scholar 

  20. Buchholz A, et al. Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng. 2002;19(1):5–15.

    CAS  PubMed  Google Scholar 

  21. Baverel G, et al. Carbon 13 NMR spectroscopy: a powerful tool for studying renal metabolism. Biochimie. 2003;85(9):863–71.

    CAS  PubMed  Google Scholar 

  22. Mesnard F, Ratcliffe RG. NMR analysis of plant nitrogen metabolism. Photosynth Res. 2005;83(2):163–80.

    CAS  PubMed  Google Scholar 

  23. Robertson DG. Metabolomics in toxicology: a review. Toxicol Sci. 2005;85(2):809–22.

    CAS  PubMed  Google Scholar 

  24. Whitehead TL, et al. H-1-NMR metabolomics analysis of zebrafish (Danio rerio) exposed to the environmentally-relevant EDC 17a-ethinylestradiol (EE2). In: Abstracts of papers of the American Chemical Society, Atlanta, GA; 2006. p. 231.

    Google Scholar 

  25. Lee WNP, Go VLW. Nutrient-gene interaction: tracer-based metabolomics. J Nutr. 2005;135(12):3027S–32.

    CAS  PubMed  Google Scholar 

  26. Oresic M, et al. Serum metabolite patterns between birth and development of autoantibodies and overt type 1 diabetes: application of large-scale metabolomics to the Type 1 Diabetes Prediction and Prevention study (DIPP). Diabetologia. 2006;49:147.

    Google Scholar 

  27. Oresic M, Vidal-Puig A, Hanninen V. Metabolomic approaches to phenotype characterization and applications to complex diseases. Expert Rev Mol Diagn. 2006;6(4):575–85.

    CAS  PubMed  Google Scholar 

  28. Chen HW, et al. Combining desorption electrospray ionization mass spectrometry and nuclear magnetic resonance for differential metabolomics without sample preparation. Rapid Commun Mass Spectrom. 2006;20(10):1577–84.

    CAS  PubMed  Google Scholar 

  29. Weeks ME, et al. A parallel proteomic and metabolomic analysis of the hydrogen peroxide- and Sty1p-dependent stress response in Schizosaccharomyces pombe. Proteomics. 2006;6(9):2772–96.

    CAS  PubMed  Google Scholar 

  30. Zimmermann D, et al. Determination of volatile products of human colon cell line metabolism by GC/MS analysis. Metabolomics. 2007;3(1):13–7.

    CAS  Google Scholar 

  31. Miccheli A, et al. Metabolic profiling by C-13-NMR spectroscopy: 1,2-C-13(2) glucose reveals a heterogeneous metabolism in human leukemia T cells. Biochimie. 2006;88(5):437–48.

    CAS  PubMed  Google Scholar 

  32. Podrabsky JE, et al. Extreme anoxia tolerance in embryos of the annual killifish Austrofundulus limnaeus: insights from a metabolomics analysis. J Exp Biol. 2007;210(Pt 13):2253–66.

    CAS  PubMed  Google Scholar 

  33. Morvan D, Demidem A. Metabolomics by proton nuclear magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug efficacy and tumor adaptive metabolic pathways. Cancer Res. 2007;67(5):2150–9.

    CAS  PubMed  Google Scholar 

  34. Ohta D, Shibata D, Kanaya S. Metabolic profiling using Fourier-transform ion-cyclotron-resonance mass spectrometry. Anal Bioanal Chem. 2007;389(5):1469–75.

    CAS  PubMed  Google Scholar 

  35. Oikawa A, et al. Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies. Plant Physiol. 2006;142(2):398–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lane AN, Fan TW-M. Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1 H TOCSY. Metabolomics. 2007;3:79–86.

    CAS  Google Scholar 

  37. Lindsley JE, Rutter J. Nutrient sensing and metabolic decisions. Comp Biochem Physiol B Biochem Mol Biol. 2004;139(4):543–59.

    PubMed  Google Scholar 

  38. Frederich M, Balschi JA. The relationship between AMP-activated protein kinase activity and AMP concentration in the isolated perfused rat heart. J Biol Chem. 2002;277(3):1928–32.

    CAS  PubMed  Google Scholar 

  39. Adams J, et al. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site. Protein Sci. 2004;13(1):155–65.

    CAS  PubMed  Google Scholar 

  40. Hawley SA, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003;2(4):28.

    PubMed  PubMed Central  Google Scholar 

  41. Zheng D, et al. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J Appl Physiol. 2001;91(3):1073–83.

    CAS  PubMed  Google Scholar 

  42. Yamauchi T, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288–95.

    CAS  PubMed  Google Scholar 

  43. Jin Q, et al. Implication of AMP-activated protein kinase and Akt-regulated survivin in lung cancer chemopreventive activities of deguelin. Cancer Res. 2007;67(24):11630–9.

    CAS  PubMed  Google Scholar 

  44. Carretero J, et al. Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene. 2007;26(11):1616–25.

    CAS  PubMed  Google Scholar 

  45. Zhong D, et al. LKB1 mutation in large cell carcinoma of the lung. Lung Cancer. 2006;53(3):285–94.

    PubMed  Google Scholar 

  46. Han S, Roman J. Rosiglitazone suppresses human lung carcinoma cell growth through PPARgamma-dependent and PPARgamma-independent signal pathways. Mol Cancer Ther. 2006;5(2):430–7.

    CAS  PubMed  Google Scholar 

  47. Han S, Khuri FR, Roman J. Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res. 2006;66(1):315–23.

    CAS  PubMed  Google Scholar 

  48. Mak BC, Yeung RS. The tuberous sclerosis complex genes in tumor development. Cancer Invest. 2004;22(4):588–603.

    CAS  PubMed  Google Scholar 

  49. Ferré P, Azzout-Marniche D, Foufelle F. AMP-activated protein kinase and hepatic genes involved in glucose metabolism. Biochem Soc Trans. 2003;31(Pt 1):220–3.

    PubMed  Google Scholar 

  50. Swinnen JV, et al. Androgens, lipogenesis and prostate cancer. J Steroid Biochem Mol Biol. 2004;92(4):273–9.

    CAS  PubMed  Google Scholar 

  51. Uyeda K, Repa JJ. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 2006;4(2):107–10.

    CAS  PubMed  Google Scholar 

  52. Swinnen JV, et al. Mimicry of a cellular low energy status blocks tumor cell anabolism and suppresses the malignant phenotype. Cancer Res. 2005;65(6):2441–8.

    CAS  PubMed  Google Scholar 

  53. Ravnskjaer K, et al. Glucose-induced repression of PPAR{alpha} gene expression in pancreatic {beta}-cells involves PP2A activation and AMPK inactivation. J Mol Endocrinol. 2006;36(2):289–99.

    CAS  PubMed  Google Scholar 

  54. Reid ME, et al. Selenium supplementation and lung cancer incidence: an update of the nutritional prevention of cancer trial. Cancer Epidemiol Biomarkers Prev. 2002;V11(N11):1285–91.

    Google Scholar 

  55. Combs GFJ. Status of selenium in prostate cancer prevention. Br J Cancer. 2004;91:195–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cohen V, Khuri FR. Chemoprevention of lung cancer. Curr Opin Pulm Med. 2004;10(4):279–83.

    CAS  PubMed  Google Scholar 

  57. Patrick L. Selenium biochemistry and cancer: a review of the literature. Altern Med Rev. 2004;9(3):239–58.

    PubMed  Google Scholar 

  58. Rayman MP. The importance of selenium to human health. Lancet. 2000;356(9225):233–41.

    CAS  PubMed  Google Scholar 

  59. Reid ME, et al. A report of high-dose selenium supplementation: response and toxicities. J Trace Elem Med Biol. 2004;18(1):69–74.

    CAS  PubMed  Google Scholar 

  60. Al-Taie OH, et al. Selenium supplementation enhances low selenium levels and stimulates glutathione peroxidase activity in peripheral blood and distal colon mucosa in past and present carriers of colon adenomas. Nutr Cancer. 2003;46(2):125–30.

    CAS  PubMed  Google Scholar 

  61. Ganther HE. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis (Oxford). 1999;20(9):1657–66.

    CAS  Google Scholar 

  62. Arner ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267(20):6102–9.

    CAS  PubMed  Google Scholar 

  63. Frenkel GD, Gong YH. Effect of selenite on tumor cell invasiveness. Cancer Lett. 1994;78(1–3):195–9.

    PubMed  Google Scholar 

  64. Kryukov GV, et al. Characterization of mammalian selenoproteomes. Science. 2003;300(5624):1439–43.

    CAS  PubMed  Google Scholar 

  65. Stadtman TC. Selenocysteine. Annu Rev Biochem. 1996;65:83–100.

    CAS  PubMed  Google Scholar 

  66. Clark LC, et al. Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial. Br J Urol. 1998;81(5):730–4.

    CAS  PubMed  Google Scholar 

  67. Ip C, et al. In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res. 2000;60(11):2882–6.

    CAS  PubMed  Google Scholar 

  68. Tanaka T, et al. Suppressing effects of dietary supplementation of the organoselenium 1,4-phenylenebis(methylene)selenocyanate and the Citrus antioxidant auraptene on lung metastasis of melanoma cells in mice. Cancer Res. 2000;60(14):3713–6.

    CAS  PubMed  Google Scholar 

  69. Yan L, et al. Dietary supplementation of selenomethionine reduces metastasis of melanoma cells in mice. Anticancer Res. 1999;19(2A):1337–42.

    CAS  PubMed  Google Scholar 

  70. Yan L, et al. Effect of dietary supplementation of selenite on pulmonary metastasis of melanoma cells in mice. Nutr Cancer. 1997;28(2):165–9.

    CAS  PubMed  Google Scholar 

  71. Yoon SO, Kim MM, Chung AS. Inhibitory effect of selenite on invasion of HT1080 tumor cells. J Biol Chem. 2001;276(23):20085–92.

    CAS  PubMed  Google Scholar 

  72. Ip C, et al. Chemical speciation influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention. J Agric Food Chem. 2000;48(6):2062–70.

    CAS  PubMed  Google Scholar 

  73. Li L, et al. Characteristics of selenazolidine prodrugs of selenocysteine: toxicity, selenium levels, and glutathione peroxidase induction in A/J mice. Life Sci. 2004;75(4):447–59.

    CAS  PubMed  Google Scholar 

  74. Rudolf E, et al. Combined effect of sodium selenite and campthotecin on cervical carcinoma cells. Neoplasma (Bratislava). 2004;51(2):127–35.

    CAS  Google Scholar 

  75. Hu H, et al. Methylseleninic acid potentiates apoptosis induced by chemotherapeutic drugs in androgen-independent prostate cancer cells. Clin Cancer Res. 2005;11(6):2379–88.

    CAS  PubMed  Google Scholar 

  76. Vadgama JV, et al. Effect of selenium in combination with Adriamycin or Taxol on several different cancer cells. Anticancer Res. 2000;20(3A):1391–4

    CAS  PubMed  Google Scholar 

  77. Juliger S, et al. Chemosensitization of B-cell lymphomas by methylseleninic acid involves nuclear factor-kappaB inhibition and the rapid generation of other selenium species. Cancer Res. 2007;67(22):10984–92.

    PubMed  Google Scholar 

  78. Li S, et al. Doxorubicin and selenium cooperatively induce fas signaling in the absence of Fas/Fas ligand interaction. Anticancer Res. 2007;27(5A):3075–82.

    CAS  PubMed  Google Scholar 

  79. Santos RA, Takahashi CS. Anticlastogenic and antigenotoxic effects of selenomethionine on doxorubicin-induced damage in vitro in human lymphocytes. Food Chem Toxicol. 2008;46(2):671–7.

    PubMed  Google Scholar 

  80. Li S, et al. Selenium sensitizes MCF-7 breast cancer cells to doxorubicin-induced apoptosis through modulation of phospho-Akt and its downstream substrates. Mol Cancer Ther. 2007;6(3):1031–8.

    CAS  PubMed  Google Scholar 

  81. Zhang J, et al. Attenuating the toxicity of cisplatin by using selenosulfate with reduced risk of selenium toxicity as compared with selenite. Toxicol Appl Pharmacol. 2008;226(3):521–9.

    Google Scholar 

  82. Medina D, et al. Se-methylselenocysteine: a new compound for chemoprevention of breast cancer. Nutr Cancer. 2001;40(1):12–7.

    CAS  PubMed  Google Scholar 

  83. Ma X, et al. Regulation of interferon and retinoic acid-induced cell death activation through thioredoxin reductase. J Biol Chem. 2001;276(27):24843–54.

    CAS  PubMed  Google Scholar 

  84. Sinha R, et al. Methylseleninic acid, a potent growth inhibitor of synchronized mouse mammary epithelial tumor cells in vitro. Biochem Pharmacol. 2001;61(3):311–7.

    CAS  PubMed  Google Scholar 

  85. Zhu Z, et al. Mechanisms of cell cycle arrest by methylseleninic acid. Cancer Res. 2002;62(1):156–64.

    CAS  PubMed  Google Scholar 

  86. Tapiero H, Townsend DM, Tew KD. The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother. 2003;57(3–4):134–44.

    CAS  PubMed  Google Scholar 

  87. Stewart MS, et al. Selenium compounds have disparate abilities to impose oxidative stress and induce apoptosis. Free Radic Biol Med. 1999;26(1–2):42–8.

    CAS  PubMed  Google Scholar 

  88. Shilo S, et al. Selenite sensitizes mitochondrial permeability transition pore opening in vitro and in vivo: a possible mechanism for chemo-protection. Biochem J. 2003;370(1):283–90.

    CAS  PubMed  Google Scholar 

  89. Zheng Y, Zhong L, Shen X. Effect of selenium-supplement on the calcium signaling in human endothelial cells. J Cell Physiol. 2005;205(1):97–106.

    CAS  PubMed  Google Scholar 

  90. Swede H, et al. Cell cycle arrest biomarkers in human lung cancer cells after treatment with selenium in culture. Cancer Epidemiol Biomarkers Prev. 2003;12(11):1248–52.

    CAS  PubMed  Google Scholar 

  91. Becker K, et al. Thioredoxin reductase as a pathophysiological factor and drug target. Eur J Biochem. 2000;267(20):6118–25.

    CAS  PubMed  Google Scholar 

  92. Huang LE, et al. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem. 1996;271(50):32253–9.

    CAS  PubMed  Google Scholar 

  93. Hayashi T, Ueno Y, Okamoto T. Oxidoreductive regulation of nuclear factor kappa B: involvement of a cellular reducing catalyst thioredoxin. J Biol Chem. 1993;268(15):11380–8.

    CAS  PubMed  Google Scholar 

  94. Schenk H, et al. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-{kappa}B and AP-1. Proc Natl Acad Sci. 1994;91(5):1672–6.

    CAS  PubMed  Google Scholar 

  95. Arredondo J, et al. A receptor-mediated mechanism of nicotine toxicity in oral keratinocytes. Lab Invest. 2001;81(12):1653–68.

    CAS  PubMed  Google Scholar 

  96. Merrill GF, Dowell P, Pearson GD. The human p53 negative regulatory domain mediates inhibition of reporter gene transactivation in yeast lacking thioredoxin reductase. Cancer Res. 1999;59(13):3175–9.

    CAS  PubMed  Google Scholar 

  97. Kaeck M, et al. Differential induction of growth arrest inducible genes by selenium compounds. Biochem Pharmacol. 1997;53(7):921–6.

    CAS  PubMed  Google Scholar 

  98. Chae HZ, Kang SW, Rhee SG. Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. In: Packer L, (ed.) Methods in Enzymology: Oxidants and antioxidants, part B, Academic: San Diego; 1999. p. 219–26.

    Google Scholar 

  99. Saitoh M, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998;17(9):2596–606.

    CAS  PubMed  Google Scholar 

  100. Fan TWM, Higashi RM, Lane AN. Integrating metabolomics and transcriptomics for probing Se anticancer mechanisms. Drug Metab Rev. 2006;38(4):707–32.

    CAS  PubMed  Google Scholar 

  101. Fan T, et al. Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells. Metabolomics J. 2006;1(4):325–39.

    Google Scholar 

  102. Vasta V, et al. Glutamine transport and enzymatic-activities involved in glutaminolysis in human platelets. Biochim Biophys Acta. 1995;1243(1):43–8.

    PubMed  Google Scholar 

  103. Aledo JC, et al. Identification of two human glutaminase loci and tissue-specific expression of the two related genes. Mamm Genome. 2000;11(12):1107–10.

    CAS  PubMed  Google Scholar 

  104. Carling D, Zammit VA, Hardie DG. A common bicyclic protein-kinase cascade inactivates the regulatory enzymes of fatty-acid and cholesterol-biosynthesis. FEBS Lett. 1987;223(2):217–22.

    CAS  PubMed  Google Scholar 

  105. Farber SA, Slack BE, Blusztajn JK. Acceleration of phosphatidylcholine synthesis and breakdown by inhibitors of mitochondrial function in neuronal cells: a model of the membrane defect of Alzheimer’s disease. FASEB J. 2000;14(14):2198–206.

    CAS  PubMed  Google Scholar 

  106. Sanjuan MA, et al. Role of diacylglycerol kinase alpha in the attenuation of receptor signaling. J Cell Biol. 2001;153(1):207–20.

    CAS  PubMed  Google Scholar 

  107. Fan TW-M, et al. Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotope-resolved metabolomics (SIRM). Mol Cancer 2009;8:41–60.

    Google Scholar 

  108. Fan TWM, et al. Determination of metabolites by proton nmr and gc analysis for organic osmolytes in crude tissue extracts. Anal Biochem. 1993;214(1):260–71.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Cancer Institute grant # 1 R01 CA101199-01, NIH Grant Number RR018733 from the National Center for Research Resources, National Science Foundation EPSCoR grant # EPS-0447479, Kentucky Challenge for Excellence, and the Brown Foundation. We thank Dr. Laura Bandura and Ms. Vennila Arumugum for A549 cell culturing, sample processing, and extraction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Whei-Mei Fan .

Editor information

Editors and Affiliations

Glossary

META

Metabolomics-edited transcriptomics analysis

Systems biology

Holistic and integrated analysis of biological processes as a system, not as individual parts

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fan, T.WM. (2012). Metabolomics-Edited Transcriptomics Analysis (META). In: Fan, TM., Lane, A., Higashi, R. (eds) The Handbook of Metabolomics. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-618-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-618-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-617-3

  • Online ISBN: 978-1-61779-618-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics